Cargando…
Estimating microhaplotype allele frequencies from low-coverage or pooled sequencing data
BACKGROUND: Microhaplotypes have the potential to be more cost-effective than SNPs for applications that require genetic panels of highly variable loci. However, development of microhaplotype panels is hindered by a lack of methods for estimating microhaplotype allele frequency from low-coverage who...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623847/ https://www.ncbi.nlm.nih.gov/pubmed/37923981 http://dx.doi.org/10.1186/s12859-023-05554-z |
Sumario: | BACKGROUND: Microhaplotypes have the potential to be more cost-effective than SNPs for applications that require genetic panels of highly variable loci. However, development of microhaplotype panels is hindered by a lack of methods for estimating microhaplotype allele frequency from low-coverage whole genome sequencing or pooled sequencing (pool-seq) data. RESULTS: We developed new methods for estimating microhaplotype allele frequency from low-coverage whole genome sequence and pool-seq data. We validated these methods using datasets from three non-model organisms. These methods allowed estimation of allele frequency and expected heterozygosity at depths routinely achieved from pooled sequencing. CONCLUSIONS: These new methods will allow microhaplotype panels to be designed using low-coverage WGS and pool-seq data to discover and evaluate candidate loci. The python script implementing the two methods and documentation are available at https://www.github.com/delomast/mhFromLowDepSeq. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-023-05554-z. |
---|