Cargando…
The hidden depths of suicidal discourse: Network analysis and natural language processing unmask uncensored expression
BACKGROUND: The socially unattractive and stigmatizing nature of suicidal thought and behavior (STB) makes it especially susceptible to censorship across most modern digital communication platforms. The ubiquitous integration of technology with day-to-day life has presented an invaluable opportunity...
Autores principales: | Lekkas, Damien, Jacobson, Nicholas C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623973/ https://www.ncbi.nlm.nih.gov/pubmed/37928333 http://dx.doi.org/10.1177/20552076231210714 |
Ejemplares similares
-
Local variance estimation for uncensored and censored observations
por: Ferrario, Paola Gloria
Publicado: (2013) -
Association of COVID19-induced anosmia and ageusia with depression and suicidal ideation
por: Yom-Tov, Elad, et al.
Publicado: (2021) -
Predicting acute suicidal ideation on Instagram using ensemble machine learning models
por: Lekkas, Damien, et al.
Publicado: (2021) -
Natural language processing and computational linguistics 2: semantics, discourse and applications
por: Kurdi, Mohamed Zakaria
Publicado: (2017) -
Emotions and Incivility in Vaccine Mandate Discourse: Natural Language Processing Insights
por: Stevens, Hannah, et al.
Publicado: (2022)