Cargando…
Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network
Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very‐large‐scale and highly complicated hardware integration as in the...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624373/ https://www.ncbi.nlm.nih.gov/pubmed/37933380 http://dx.doi.org/10.1002/EXP.20220126 |
_version_ | 1785130911145132032 |
---|---|
author | Tian, Bobo Xie, Zhuozhuang Chen, Luqiu Hao, Shenglan Liu, Yifei Feng, Guangdi Liu, Xuefeng Liu, Hongbo Yang, Jing Zhang, Yuanyuan Bai, Wei Lin, Tie Shen, Hong Meng, Xiangjian Zhong, Ni Peng, Hui Yue, Fangyu Tang, Xiaodong Wang, Jianlu Zhu, Qiuxiang Ivry, Yachin Dkhil, Brahim Chu, Junhao Duan, Chungang |
author_facet | Tian, Bobo Xie, Zhuozhuang Chen, Luqiu Hao, Shenglan Liu, Yifei Feng, Guangdi Liu, Xuefeng Liu, Hongbo Yang, Jing Zhang, Yuanyuan Bai, Wei Lin, Tie Shen, Hong Meng, Xiangjian Zhong, Ni Peng, Hui Yue, Fangyu Tang, Xiaodong Wang, Jianlu Zhu, Qiuxiang Ivry, Yachin Dkhil, Brahim Chu, Junhao Duan, Chungang |
author_sort | Tian, Bobo |
collection | PubMed |
description | Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very‐large‐scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non‐volatile capacitances of a ferroelectric‐based memcapacitor with ultralow‐power consumption. The as‐designed metal/ferroelectric/metal/insulator/semiconductor memcapacitor shows distinct 3‐bit capacitance states controlled by the ferroelectric domain dynamics. These robust memcapacitive states exhibit uniform maintenance of more than 10(4) s and well endurance of 10(9) cycles. In a wired memcapacitor crossbar network hardware, analog vector‐matrix multiplication is successfully implemented to classify 9‐pixel images by collecting the sum of displacement currents (I = C × dV/dt) in each column, which intrinsically consumes zero energy in memcapacitors themselves. Our work sheds light on an ultralow‐power neural hardware based on ferroelectric memcapacitors. |
format | Online Article Text |
id | pubmed-10624373 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106243732023-11-05 Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network Tian, Bobo Xie, Zhuozhuang Chen, Luqiu Hao, Shenglan Liu, Yifei Feng, Guangdi Liu, Xuefeng Liu, Hongbo Yang, Jing Zhang, Yuanyuan Bai, Wei Lin, Tie Shen, Hong Meng, Xiangjian Zhong, Ni Peng, Hui Yue, Fangyu Tang, Xiaodong Wang, Jianlu Zhu, Qiuxiang Ivry, Yachin Dkhil, Brahim Chu, Junhao Duan, Chungang Exploration (Beijing) Research Articles Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very‐large‐scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non‐volatile capacitances of a ferroelectric‐based memcapacitor with ultralow‐power consumption. The as‐designed metal/ferroelectric/metal/insulator/semiconductor memcapacitor shows distinct 3‐bit capacitance states controlled by the ferroelectric domain dynamics. These robust memcapacitive states exhibit uniform maintenance of more than 10(4) s and well endurance of 10(9) cycles. In a wired memcapacitor crossbar network hardware, analog vector‐matrix multiplication is successfully implemented to classify 9‐pixel images by collecting the sum of displacement currents (I = C × dV/dt) in each column, which intrinsically consumes zero energy in memcapacitors themselves. Our work sheds light on an ultralow‐power neural hardware based on ferroelectric memcapacitors. John Wiley and Sons Inc. 2023-05-11 /pmc/articles/PMC10624373/ /pubmed/37933380 http://dx.doi.org/10.1002/EXP.20220126 Text en © 2023 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Tian, Bobo Xie, Zhuozhuang Chen, Luqiu Hao, Shenglan Liu, Yifei Feng, Guangdi Liu, Xuefeng Liu, Hongbo Yang, Jing Zhang, Yuanyuan Bai, Wei Lin, Tie Shen, Hong Meng, Xiangjian Zhong, Ni Peng, Hui Yue, Fangyu Tang, Xiaodong Wang, Jianlu Zhu, Qiuxiang Ivry, Yachin Dkhil, Brahim Chu, Junhao Duan, Chungang Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network |
title | Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network |
title_full | Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network |
title_fullStr | Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network |
title_full_unstemmed | Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network |
title_short | Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network |
title_sort | ultralow‐power in‐memory computing based on ferroelectric memcapacitor network |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624373/ https://www.ncbi.nlm.nih.gov/pubmed/37933380 http://dx.doi.org/10.1002/EXP.20220126 |
work_keys_str_mv | AT tianbobo ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT xiezhuozhuang ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT chenluqiu ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT haoshenglan ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT liuyifei ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT fengguangdi ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT liuxuefeng ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT liuhongbo ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT yangjing ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT zhangyuanyuan ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT baiwei ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT lintie ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT shenhong ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT mengxiangjian ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT zhongni ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT penghui ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT yuefangyu ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT tangxiaodong ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT wangjianlu ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT zhuqiuxiang ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT ivryyachin ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT dkhilbrahim ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT chujunhao ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork AT duanchungang ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork |