Cargando…

Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network

Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very‐large‐scale and highly complicated hardware integration as in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Bobo, Xie, Zhuozhuang, Chen, Luqiu, Hao, Shenglan, Liu, Yifei, Feng, Guangdi, Liu, Xuefeng, Liu, Hongbo, Yang, Jing, Zhang, Yuanyuan, Bai, Wei, Lin, Tie, Shen, Hong, Meng, Xiangjian, Zhong, Ni, Peng, Hui, Yue, Fangyu, Tang, Xiaodong, Wang, Jianlu, Zhu, Qiuxiang, Ivry, Yachin, Dkhil, Brahim, Chu, Junhao, Duan, Chungang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624373/
https://www.ncbi.nlm.nih.gov/pubmed/37933380
http://dx.doi.org/10.1002/EXP.20220126
_version_ 1785130911145132032
author Tian, Bobo
Xie, Zhuozhuang
Chen, Luqiu
Hao, Shenglan
Liu, Yifei
Feng, Guangdi
Liu, Xuefeng
Liu, Hongbo
Yang, Jing
Zhang, Yuanyuan
Bai, Wei
Lin, Tie
Shen, Hong
Meng, Xiangjian
Zhong, Ni
Peng, Hui
Yue, Fangyu
Tang, Xiaodong
Wang, Jianlu
Zhu, Qiuxiang
Ivry, Yachin
Dkhil, Brahim
Chu, Junhao
Duan, Chungang
author_facet Tian, Bobo
Xie, Zhuozhuang
Chen, Luqiu
Hao, Shenglan
Liu, Yifei
Feng, Guangdi
Liu, Xuefeng
Liu, Hongbo
Yang, Jing
Zhang, Yuanyuan
Bai, Wei
Lin, Tie
Shen, Hong
Meng, Xiangjian
Zhong, Ni
Peng, Hui
Yue, Fangyu
Tang, Xiaodong
Wang, Jianlu
Zhu, Qiuxiang
Ivry, Yachin
Dkhil, Brahim
Chu, Junhao
Duan, Chungang
author_sort Tian, Bobo
collection PubMed
description Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very‐large‐scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non‐volatile capacitances of a ferroelectric‐based memcapacitor with ultralow‐power consumption. The as‐designed metal/ferroelectric/metal/insulator/semiconductor memcapacitor shows distinct 3‐bit capacitance states controlled by the ferroelectric domain dynamics. These robust memcapacitive states exhibit uniform maintenance of more than 10(4) s and well endurance of 10(9) cycles. In a wired memcapacitor crossbar network hardware, analog vector‐matrix multiplication is successfully implemented to classify 9‐pixel images by collecting the sum of displacement currents (I = C × dV/dt) in each column, which intrinsically consumes zero energy in memcapacitors themselves. Our work sheds light on an ultralow‐power neural hardware based on ferroelectric memcapacitors.
format Online
Article
Text
id pubmed-10624373
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106243732023-11-05 Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network Tian, Bobo Xie, Zhuozhuang Chen, Luqiu Hao, Shenglan Liu, Yifei Feng, Guangdi Liu, Xuefeng Liu, Hongbo Yang, Jing Zhang, Yuanyuan Bai, Wei Lin, Tie Shen, Hong Meng, Xiangjian Zhong, Ni Peng, Hui Yue, Fangyu Tang, Xiaodong Wang, Jianlu Zhu, Qiuxiang Ivry, Yachin Dkhil, Brahim Chu, Junhao Duan, Chungang Exploration (Beijing) Research Articles Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very‐large‐scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non‐volatile capacitances of a ferroelectric‐based memcapacitor with ultralow‐power consumption. The as‐designed metal/ferroelectric/metal/insulator/semiconductor memcapacitor shows distinct 3‐bit capacitance states controlled by the ferroelectric domain dynamics. These robust memcapacitive states exhibit uniform maintenance of more than 10(4) s and well endurance of 10(9) cycles. In a wired memcapacitor crossbar network hardware, analog vector‐matrix multiplication is successfully implemented to classify 9‐pixel images by collecting the sum of displacement currents (I = C × dV/dt) in each column, which intrinsically consumes zero energy in memcapacitors themselves. Our work sheds light on an ultralow‐power neural hardware based on ferroelectric memcapacitors. John Wiley and Sons Inc. 2023-05-11 /pmc/articles/PMC10624373/ /pubmed/37933380 http://dx.doi.org/10.1002/EXP.20220126 Text en © 2023 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Tian, Bobo
Xie, Zhuozhuang
Chen, Luqiu
Hao, Shenglan
Liu, Yifei
Feng, Guangdi
Liu, Xuefeng
Liu, Hongbo
Yang, Jing
Zhang, Yuanyuan
Bai, Wei
Lin, Tie
Shen, Hong
Meng, Xiangjian
Zhong, Ni
Peng, Hui
Yue, Fangyu
Tang, Xiaodong
Wang, Jianlu
Zhu, Qiuxiang
Ivry, Yachin
Dkhil, Brahim
Chu, Junhao
Duan, Chungang
Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network
title Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network
title_full Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network
title_fullStr Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network
title_full_unstemmed Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network
title_short Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network
title_sort ultralow‐power in‐memory computing based on ferroelectric memcapacitor network
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624373/
https://www.ncbi.nlm.nih.gov/pubmed/37933380
http://dx.doi.org/10.1002/EXP.20220126
work_keys_str_mv AT tianbobo ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT xiezhuozhuang ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT chenluqiu ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT haoshenglan ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT liuyifei ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT fengguangdi ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT liuxuefeng ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT liuhongbo ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT yangjing ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT zhangyuanyuan ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT baiwei ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT lintie ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT shenhong ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT mengxiangjian ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT zhongni ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT penghui ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT yuefangyu ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT tangxiaodong ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT wangjianlu ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT zhuqiuxiang ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT ivryyachin ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT dkhilbrahim ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT chujunhao ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork
AT duanchungang ultralowpowerinmemorycomputingbasedonferroelectricmemcapacitornetwork