Cargando…
Prior knowledge based deep learning auto-segmentation in magnetic resonance imaging-guided radiotherapy of prostate cancer
BACKGROUND AND PURPOSE: Automation is desirable for organ segmentation in radiotherapy. This study compared deep learning methods for auto-segmentation of organs-at-risk (OARs) and clinical target volume (CTV) in prostate cancer patients undergoing fractionated magnetic resonance (MR)-guided adaptiv...
Autores principales: | Kawula, Maria, Vagni, Marica, Cusumano, Davide, Boldrini, Luca, Placidi, Lorenzo, Corradini, Stefanie, Belka, Claus, Landry, Guillaume, Kurz, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624570/ https://www.ncbi.nlm.nih.gov/pubmed/37928618 http://dx.doi.org/10.1016/j.phro.2023.100498 |
Ejemplares similares
-
Assessment of intrafractional prostate motion and its dosimetric impact in MRI-guided online adaptive radiotherapy with gating
por: Xiong, Yuqing, et al.
Publicado: (2022) -
Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer
por: Kawula, Maria, et al.
Publicado: (2022) -
Deep learning based automatic segmentation of organs-at-risk for 0.35 T MRgRT of lung tumors
por: Ribeiro, Marvin F., et al.
Publicado: (2023) -
Magnetic resonance-guided radiation therapy: the beginning of a new era
por: Landry, Guillaume, et al.
Publicado: (2020) -
Delivery of online adaptive magnetic resonance guided radiotherapy based on isodose boundaries
por: Votta, Claudio, et al.
Publicado: (2021)