Cargando…
Determining body height and weight from thoracic and abdominal CT localizers in pediatric and young adult patients using deep learning
In this retrospective study, we aimed to predict the body height and weight of pediatric patients using CT localizers, which are overview scans performed before the acquisition of the CT. We trained three commonly used networks (EfficientNetV2-S, ResNet-18, and ResNet-34) on a cohort of 1009 and 111...
Autores principales: | Demircioğlu, Aydin, Quinsten, Anton S., Umutlu, Lale, Forsting, Michael, Nassenstein, Kai, Bos, Denise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624655/ https://www.ncbi.nlm.nih.gov/pubmed/37923758 http://dx.doi.org/10.1038/s41598-023-46080-5 |
Ejemplares similares
-
Pediatric age estimation from radiographs of the knee using deep learning
por: Demircioğlu, Aydin, et al.
Publicado: (2022) -
Determining the anatomical site in knee radiographs using deep learning
por: Quinsten, Anton S., et al.
Publicado: (2022) -
Pediatric age estimation from thoracic and abdominal CT scout views using deep learning
por: Demircioğlu, Aydin, et al.
Publicado: (2023) -
Detecting the pulmonary trunk in CT scout views using deep learning
por: Demircioğlu, Aydin, et al.
Publicado: (2021) -
Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
por: Haubold, Johannes, et al.
Publicado: (2021)