Cargando…

Machine learning-based cluster analysis of immune cell subtypes and breast cancer survival

Host immunity involves various immune cells working in concert to achieve balanced immune response. Host immunity interacts with tumorigenic process impacting disease outcome. Clusters of different immune cells may reveal unique host immunity in relation to breast cancer progression. CIBERSORT algor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhanwei, Katsaros, Dionyssios, Wang, Junlong, Biglio, Nicholetta, Hernandez, Brenda Y., Fei, Peiwen, Lu, Lingeng, Risch, Harvey, Yu, Herbert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624674/
https://www.ncbi.nlm.nih.gov/pubmed/37923775
http://dx.doi.org/10.1038/s41598-023-45932-4
_version_ 1785130963516260352
author Wang, Zhanwei
Katsaros, Dionyssios
Wang, Junlong
Biglio, Nicholetta
Hernandez, Brenda Y.
Fei, Peiwen
Lu, Lingeng
Risch, Harvey
Yu, Herbert
author_facet Wang, Zhanwei
Katsaros, Dionyssios
Wang, Junlong
Biglio, Nicholetta
Hernandez, Brenda Y.
Fei, Peiwen
Lu, Lingeng
Risch, Harvey
Yu, Herbert
author_sort Wang, Zhanwei
collection PubMed
description Host immunity involves various immune cells working in concert to achieve balanced immune response. Host immunity interacts with tumorigenic process impacting disease outcome. Clusters of different immune cells may reveal unique host immunity in relation to breast cancer progression. CIBERSORT algorithm was used to estimate relative abundances of 22 immune cell types in 3 datasets, METABRIC, TCGA, and our study. The cell type data in METABRIC were analyzed for cluster using unsupervised hierarchical clustering (UHC). The UHC results were employed to train machine learning models. Kaplan–Meier and Cox regression survival analyses were performed to assess cell clusters in association with relapse-free and overall survival. Differentially expressed genes by clusters were interrogated with IPA for molecular signatures. UHC analysis identified two distinct immune cell clusters, clusters A (83.2%) and B (16.8%). Memory B cells, plasma cells, CD8 positive T cells, resting memory CD4 T cells, activated NK cells, monocytes, M1 macrophages, and resting mast cells were more abundant in clusters A than B, whereas regulatory T cells and M0 and M2 macrophages were more in clusters B than A. Patients in cluster A had favorable survival. Similar survival associations were also observed in other independent studies. IPA analysis showed that pathogen-induced cytokine storm signaling pathway, phagosome formation, and T cell receptor signaling were related to the cell type clusters. Our finding suggests that different immune cell clusters may indicate distinct immune responses to tumor growth, suggesting their potential for disease management.
format Online
Article
Text
id pubmed-10624674
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106246742023-11-05 Machine learning-based cluster analysis of immune cell subtypes and breast cancer survival Wang, Zhanwei Katsaros, Dionyssios Wang, Junlong Biglio, Nicholetta Hernandez, Brenda Y. Fei, Peiwen Lu, Lingeng Risch, Harvey Yu, Herbert Sci Rep Article Host immunity involves various immune cells working in concert to achieve balanced immune response. Host immunity interacts with tumorigenic process impacting disease outcome. Clusters of different immune cells may reveal unique host immunity in relation to breast cancer progression. CIBERSORT algorithm was used to estimate relative abundances of 22 immune cell types in 3 datasets, METABRIC, TCGA, and our study. The cell type data in METABRIC were analyzed for cluster using unsupervised hierarchical clustering (UHC). The UHC results were employed to train machine learning models. Kaplan–Meier and Cox regression survival analyses were performed to assess cell clusters in association with relapse-free and overall survival. Differentially expressed genes by clusters were interrogated with IPA for molecular signatures. UHC analysis identified two distinct immune cell clusters, clusters A (83.2%) and B (16.8%). Memory B cells, plasma cells, CD8 positive T cells, resting memory CD4 T cells, activated NK cells, monocytes, M1 macrophages, and resting mast cells were more abundant in clusters A than B, whereas regulatory T cells and M0 and M2 macrophages were more in clusters B than A. Patients in cluster A had favorable survival. Similar survival associations were also observed in other independent studies. IPA analysis showed that pathogen-induced cytokine storm signaling pathway, phagosome formation, and T cell receptor signaling were related to the cell type clusters. Our finding suggests that different immune cell clusters may indicate distinct immune responses to tumor growth, suggesting their potential for disease management. Nature Publishing Group UK 2023-11-03 /pmc/articles/PMC10624674/ /pubmed/37923775 http://dx.doi.org/10.1038/s41598-023-45932-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wang, Zhanwei
Katsaros, Dionyssios
Wang, Junlong
Biglio, Nicholetta
Hernandez, Brenda Y.
Fei, Peiwen
Lu, Lingeng
Risch, Harvey
Yu, Herbert
Machine learning-based cluster analysis of immune cell subtypes and breast cancer survival
title Machine learning-based cluster analysis of immune cell subtypes and breast cancer survival
title_full Machine learning-based cluster analysis of immune cell subtypes and breast cancer survival
title_fullStr Machine learning-based cluster analysis of immune cell subtypes and breast cancer survival
title_full_unstemmed Machine learning-based cluster analysis of immune cell subtypes and breast cancer survival
title_short Machine learning-based cluster analysis of immune cell subtypes and breast cancer survival
title_sort machine learning-based cluster analysis of immune cell subtypes and breast cancer survival
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624674/
https://www.ncbi.nlm.nih.gov/pubmed/37923775
http://dx.doi.org/10.1038/s41598-023-45932-4
work_keys_str_mv AT wangzhanwei machinelearningbasedclusteranalysisofimmunecellsubtypesandbreastcancersurvival
AT katsarosdionyssios machinelearningbasedclusteranalysisofimmunecellsubtypesandbreastcancersurvival
AT wangjunlong machinelearningbasedclusteranalysisofimmunecellsubtypesandbreastcancersurvival
AT biglionicholetta machinelearningbasedclusteranalysisofimmunecellsubtypesandbreastcancersurvival
AT hernandezbrenday machinelearningbasedclusteranalysisofimmunecellsubtypesandbreastcancersurvival
AT feipeiwen machinelearningbasedclusteranalysisofimmunecellsubtypesandbreastcancersurvival
AT lulingeng machinelearningbasedclusteranalysisofimmunecellsubtypesandbreastcancersurvival
AT rischharvey machinelearningbasedclusteranalysisofimmunecellsubtypesandbreastcancersurvival
AT yuherbert machinelearningbasedclusteranalysisofimmunecellsubtypesandbreastcancersurvival