Cargando…
Letter to the Editor on “Comparative performance of fully-automated and semi-automated artificial intelligence methods for the detection of clinically significant prostate cancer on MRI: a systematic review”
Autores principales: | Bevilacqua, Alessandro, Mottola, Margherita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624779/ https://www.ncbi.nlm.nih.gov/pubmed/37923836 http://dx.doi.org/10.1186/s13244-023-01520-8 |
Ejemplares similares
-
Comparative performance of fully-automated and semi-automated artificial intelligence methods for the detection of clinically significant prostate cancer on MRI: a systematic review
por: Sushentsev, Nikita, et al.
Publicado: (2022) -
Letter to the editor: “Utilization of CT and MRI scanning in Taiwan, 2000–2017”
por: Li, Hao-Ming, et al.
Publicado: (2023) -
Fully and semi-automated shape differentiation in NGSolve
por: Gangl, Peter, et al.
Publicado: (2020) -
Reply to Letter to the editor: “Utilization of CT and MRI scanning in Taiwan, 2000–2017”
por: Effendi, Fransisca Fortunata, et al.
Publicado: (2023) -
Artificial intelligence–based technology for semi-automated segmentation of rectal cancer using high-resolution MRI
por: Hamabe, Atsushi, et al.
Publicado: (2022)