Cargando…

Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia

Matrix Gla protein (MGP) is a vitamin K-dependent post-translationally modified protein, highly expressed in vascular and cartilaginous tissues. It is a potent inhibitor of extracellular matrix mineralization. Biallelic loss-of-function variants in the MGP gene cause Keutel syndrome, an autosomal re...

Descripción completa

Detalles Bibliográficos
Autores principales: Gourgas, Ophélie, Lemire, Gabrielle, Eaton, Alison L., Alshahrani, Sultanah, Duker, Angela L., Li, Jingjing, Carroll, Ricki S., Mackenzie, Stuart, Nikkel, Sarah M., Bober, Michael B., Boycott, Kym M., Murshed, Monzur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624854/
https://www.ncbi.nlm.nih.gov/pubmed/37923733
http://dx.doi.org/10.1038/s41467-023-41651-6
_version_ 1785131000004608000
author Gourgas, Ophélie
Lemire, Gabrielle
Eaton, Alison L.
Alshahrani, Sultanah
Duker, Angela L.
Li, Jingjing
Carroll, Ricki S.
Mackenzie, Stuart
Nikkel, Sarah M.
Bober, Michael B.
Boycott, Kym M.
Murshed, Monzur
author_facet Gourgas, Ophélie
Lemire, Gabrielle
Eaton, Alison L.
Alshahrani, Sultanah
Duker, Angela L.
Li, Jingjing
Carroll, Ricki S.
Mackenzie, Stuart
Nikkel, Sarah M.
Bober, Michael B.
Boycott, Kym M.
Murshed, Monzur
author_sort Gourgas, Ophélie
collection PubMed
description Matrix Gla protein (MGP) is a vitamin K-dependent post-translationally modified protein, highly expressed in vascular and cartilaginous tissues. It is a potent inhibitor of extracellular matrix mineralization. Biallelic loss-of-function variants in the MGP gene cause Keutel syndrome, an autosomal recessive disorder characterized by widespread calcification of various cartilaginous tissues and skeletal and vascular anomalies. In this study, we report four individuals from two unrelated families with two heterozygous variants in MGP, both altering the cysteine 19 residue to phenylalanine or tyrosine. These individuals present with a spondyloepiphyseal skeletal dysplasia characterized by short stature with a short trunk, diffuse platyspondyly, midface retrusion, progressive epiphyseal anomalies and brachytelephalangism. We investigated the cellular and molecular effects of one of the heterozygous deleterious variants (C19F) using both cell and genetically modified mouse models. Heterozygous ‘knock-in’ mice expressing C19F MGP recapitulate most of the skeletal anomalies observed in the affected individuals. Our results suggest that the main underlying mechanism leading to the observed skeletal dysplasia is endoplasmic reticulum stress-induced apoptosis of the growth plate chondrocytes. Overall, our findings support that heterozygous variants in MGP altering the Cys19 residue cause autosomal dominant spondyloepiphyseal dysplasia, a condition distinct from Keutel syndrome both clinically and molecularly.
format Online
Article
Text
id pubmed-10624854
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106248542023-11-05 Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia Gourgas, Ophélie Lemire, Gabrielle Eaton, Alison L. Alshahrani, Sultanah Duker, Angela L. Li, Jingjing Carroll, Ricki S. Mackenzie, Stuart Nikkel, Sarah M. Bober, Michael B. Boycott, Kym M. Murshed, Monzur Nat Commun Article Matrix Gla protein (MGP) is a vitamin K-dependent post-translationally modified protein, highly expressed in vascular and cartilaginous tissues. It is a potent inhibitor of extracellular matrix mineralization. Biallelic loss-of-function variants in the MGP gene cause Keutel syndrome, an autosomal recessive disorder characterized by widespread calcification of various cartilaginous tissues and skeletal and vascular anomalies. In this study, we report four individuals from two unrelated families with two heterozygous variants in MGP, both altering the cysteine 19 residue to phenylalanine or tyrosine. These individuals present with a spondyloepiphyseal skeletal dysplasia characterized by short stature with a short trunk, diffuse platyspondyly, midface retrusion, progressive epiphyseal anomalies and brachytelephalangism. We investigated the cellular and molecular effects of one of the heterozygous deleterious variants (C19F) using both cell and genetically modified mouse models. Heterozygous ‘knock-in’ mice expressing C19F MGP recapitulate most of the skeletal anomalies observed in the affected individuals. Our results suggest that the main underlying mechanism leading to the observed skeletal dysplasia is endoplasmic reticulum stress-induced apoptosis of the growth plate chondrocytes. Overall, our findings support that heterozygous variants in MGP altering the Cys19 residue cause autosomal dominant spondyloepiphyseal dysplasia, a condition distinct from Keutel syndrome both clinically and molecularly. Nature Publishing Group UK 2023-11-03 /pmc/articles/PMC10624854/ /pubmed/37923733 http://dx.doi.org/10.1038/s41467-023-41651-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Gourgas, Ophélie
Lemire, Gabrielle
Eaton, Alison L.
Alshahrani, Sultanah
Duker, Angela L.
Li, Jingjing
Carroll, Ricki S.
Mackenzie, Stuart
Nikkel, Sarah M.
Bober, Michael B.
Boycott, Kym M.
Murshed, Monzur
Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia
title Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia
title_full Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia
title_fullStr Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia
title_full_unstemmed Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia
title_short Specific heterozygous variants in MGP lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia
title_sort specific heterozygous variants in mgp lead to endoplasmic reticulum stress and cause spondyloepiphyseal dysplasia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624854/
https://www.ncbi.nlm.nih.gov/pubmed/37923733
http://dx.doi.org/10.1038/s41467-023-41651-6
work_keys_str_mv AT gourgasophelie specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT lemiregabrielle specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT eatonalisonl specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT alshahranisultanah specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT dukerangelal specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT lijingjing specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT carrollrickis specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT mackenziestuart specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT nikkelsarahm specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT bobermichaelb specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT boycottkymm specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia
AT murshedmonzur specificheterozygousvariantsinmgpleadtoendoplasmicreticulumstressandcausespondyloepiphysealdysplasia