Cargando…
Impacts of morphology parameters on the risk of rupture in intracranial aneurysms: statistical and computational analyses
The hemodynamic analysis of the blood stream inside the cerebral aneurysms reveals the risk of the aneurysm rupture. In addition, the high risk region prone to rupture would be determined by the hemodynamic analysis of the blood. In present article, computational fluid dynamic is used for the invest...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624915/ https://www.ncbi.nlm.nih.gov/pubmed/37923845 http://dx.doi.org/10.1038/s41598-023-46211-y |
Sumario: | The hemodynamic analysis of the blood stream inside the cerebral aneurysms reveals the risk of the aneurysm rupture. In addition, the high risk region prone to rupture would be determined by the hemodynamic analysis of the blood. In present article, computational fluid dynamic is used for the investigation of the hemodynamic effects on the aneurysm wall and risk of rupture. This study tries to find the connection between the risk of rupture with three geometrical features of aneurysm i.e., Ellipsoid Max semi-axis, Size ratio and Tortuosity. Statistical analysis is done over 30 different ruptured /unruptured ICA aneurysms to find meaningful relation between selected geometrical factors and rupture risk. The hemodynamic analysis is done over four distinct aneurysm models to attain more details on effects of chosen geometrical factors. The results of simulations indicate that the Ellipsoid Max semi-axis have meaningful impacts on the risk of rupture. |
---|