Cargando…
Innovative Real‐Time Flow Sensor Using Detergent‐Free Complex Emulsions with Dual‐Emissive Semi‐Perfluoroalkyl Substituted Α‐Cyanostilbene
In this study, the potential of complex emulsions is investigated as transducers in sensing applications. Complex emulsions are stabilized without external detergents by developing a novel α‐cyanostilbene substituted with PEG and semi‐perfluoroalkyl chain (CNFCPEG). CNFCPEG exhibits unique variable...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625100/ https://www.ncbi.nlm.nih.gov/pubmed/37702128 http://dx.doi.org/10.1002/advs.202304108 |
_version_ | 1785131057109008384 |
---|---|
author | Rakesh, Narani Tu, Hsiung‐Lin Chang, Po‐Chun Gebreyesus, Sofani Tafesse Lin, Che‐Jen |
author_facet | Rakesh, Narani Tu, Hsiung‐Lin Chang, Po‐Chun Gebreyesus, Sofani Tafesse Lin, Che‐Jen |
author_sort | Rakesh, Narani |
collection | PubMed |
description | In this study, the potential of complex emulsions is investigated as transducers in sensing applications. Complex emulsions are stabilized without external detergents by developing a novel α‐cyanostilbene substituted with PEG and semi‐perfluoroalkyl chain (CNFCPEG). CNFCPEG exhibits unique variable emission properties depending on its aggregation state, allowing dual blue and green emissions in complex emulsions with hydrocarbon‐in‐fluorocarbon‐in‐water (H/F/W) morphology. The green excimer emissions result from the self‐assembly of CNFCPEG at the fluorocarbon/water interface, while the blue emission observed is due to aggregation in the organic phase. A novel flow‐injection method is developed by incorporating complex emulsions with CNFCPEG into multiple‐well flow chips (MWFC). Iodine is successfully detected in a mobile aqueous solution by monitoring morphology changes. The findings demonstrate that self‐stabilized complex emulsions with MWFC hold great promise for real‐time sensing without costly instruments. |
format | Online Article Text |
id | pubmed-10625100 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-106251002023-11-05 Innovative Real‐Time Flow Sensor Using Detergent‐Free Complex Emulsions with Dual‐Emissive Semi‐Perfluoroalkyl Substituted Α‐Cyanostilbene Rakesh, Narani Tu, Hsiung‐Lin Chang, Po‐Chun Gebreyesus, Sofani Tafesse Lin, Che‐Jen Adv Sci (Weinh) Research Articles In this study, the potential of complex emulsions is investigated as transducers in sensing applications. Complex emulsions are stabilized without external detergents by developing a novel α‐cyanostilbene substituted with PEG and semi‐perfluoroalkyl chain (CNFCPEG). CNFCPEG exhibits unique variable emission properties depending on its aggregation state, allowing dual blue and green emissions in complex emulsions with hydrocarbon‐in‐fluorocarbon‐in‐water (H/F/W) morphology. The green excimer emissions result from the self‐assembly of CNFCPEG at the fluorocarbon/water interface, while the blue emission observed is due to aggregation in the organic phase. A novel flow‐injection method is developed by incorporating complex emulsions with CNFCPEG into multiple‐well flow chips (MWFC). Iodine is successfully detected in a mobile aqueous solution by monitoring morphology changes. The findings demonstrate that self‐stabilized complex emulsions with MWFC hold great promise for real‐time sensing without costly instruments. John Wiley and Sons Inc. 2023-09-13 /pmc/articles/PMC10625100/ /pubmed/37702128 http://dx.doi.org/10.1002/advs.202304108 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Rakesh, Narani Tu, Hsiung‐Lin Chang, Po‐Chun Gebreyesus, Sofani Tafesse Lin, Che‐Jen Innovative Real‐Time Flow Sensor Using Detergent‐Free Complex Emulsions with Dual‐Emissive Semi‐Perfluoroalkyl Substituted Α‐Cyanostilbene |
title | Innovative Real‐Time Flow Sensor Using Detergent‐Free Complex Emulsions with Dual‐Emissive Semi‐Perfluoroalkyl Substituted Α‐Cyanostilbene |
title_full | Innovative Real‐Time Flow Sensor Using Detergent‐Free Complex Emulsions with Dual‐Emissive Semi‐Perfluoroalkyl Substituted Α‐Cyanostilbene |
title_fullStr | Innovative Real‐Time Flow Sensor Using Detergent‐Free Complex Emulsions with Dual‐Emissive Semi‐Perfluoroalkyl Substituted Α‐Cyanostilbene |
title_full_unstemmed | Innovative Real‐Time Flow Sensor Using Detergent‐Free Complex Emulsions with Dual‐Emissive Semi‐Perfluoroalkyl Substituted Α‐Cyanostilbene |
title_short | Innovative Real‐Time Flow Sensor Using Detergent‐Free Complex Emulsions with Dual‐Emissive Semi‐Perfluoroalkyl Substituted Α‐Cyanostilbene |
title_sort | innovative real‐time flow sensor using detergent‐free complex emulsions with dual‐emissive semi‐perfluoroalkyl substituted α‐cyanostilbene |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625100/ https://www.ncbi.nlm.nih.gov/pubmed/37702128 http://dx.doi.org/10.1002/advs.202304108 |
work_keys_str_mv | AT rakeshnarani innovativerealtimeflowsensorusingdetergentfreecomplexemulsionswithdualemissivesemiperfluoroalkylsubstitutedacyanostilbene AT tuhsiunglin innovativerealtimeflowsensorusingdetergentfreecomplexemulsionswithdualemissivesemiperfluoroalkylsubstitutedacyanostilbene AT changpochun innovativerealtimeflowsensorusingdetergentfreecomplexemulsionswithdualemissivesemiperfluoroalkylsubstitutedacyanostilbene AT gebreyesussofanitafesse innovativerealtimeflowsensorusingdetergentfreecomplexemulsionswithdualemissivesemiperfluoroalkylsubstitutedacyanostilbene AT linchejen innovativerealtimeflowsensorusingdetergentfreecomplexemulsionswithdualemissivesemiperfluoroalkylsubstitutedacyanostilbene |