Cargando…
Giant Spin‐Orbit Torque in Sputter‐Deposited Bi Films
Bismuth (Bi) has the strongest spin‐orbit coupling among non‐radioactive elements and is thus a promising material for efficient charge‐to‐spin conversion. However, previous electrical detections have reported controversial results for the conversion efficiency. In this study, an optical detection o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625106/ https://www.ncbi.nlm.nih.gov/pubmed/37679062 http://dx.doi.org/10.1002/advs.202303831 |
Sumario: | Bismuth (Bi) has the strongest spin‐orbit coupling among non‐radioactive elements and is thus a promising material for efficient charge‐to‐spin conversion. However, previous electrical detections have reported controversial results for the conversion efficiency. In this study, an optical detection of a spin‐orbit torque is reported in a Bi/CoFeB bilayer with a polycrystalline texture of (012) and (003). Taking advantage of the optical detection, spin‐orbit torque is accurately separated from the Oersted field and achieves a giant damping‐like torque efficiency of +0.5, verifying efficient charge‐to‐spin conversion. This study also demonstrates a field‐like torque efficiency of −0.1. For the mechanism of the charge‐to‐spin conversion, the bulk spin Hall effect and the interface Rashba‐Edelstein effect are considered. |
---|