Cargando…
Determining the prognosis of Lung cancer from mutated genes using a deep learning survival model: a large multi-center study
BACKGROUND: Gene status has become the focus of prognosis prediction. Furthermore, deep learning has frequently been implemented in medical imaging to diagnose, prognosticate, and evaluate treatment responses in patients with cancer. However, few deep learning survival (DLS) models based on mutation...
Autores principales: | Peng, Jie, Xiao, Lushan, Zhu, Hongbo, Han, Lijie, Ma, Honglian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625246/ https://www.ncbi.nlm.nih.gov/pubmed/37925409 http://dx.doi.org/10.1186/s12935-023-03118-y |
Ejemplares similares
-
Deep learning to estimate durable clinical benefit and prognosis from patients with non-small cell lung cancer treated with PD-1/PD-L1 blockade
por: Peng, Jie, et al.
Publicado: (2022) -
A Somatic Mutation Signature Predicts the Best Overall Response to Anti-programmed Cell Death Protein-1 Treatment in Epidermal Growth Factor Receptor/Anaplastic Lymphoma Kinase-Negative Non-squamous Non-small Cell Lung Cancer
por: Peng, Jie, et al.
Publicado: (2022) -
Automated deep learning for classification of dental implant radiographs using a large multi-center dataset
por: Park, Wonse, et al.
Publicado: (2023) -
DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data
por: Poirion, Olivier B., et al.
Publicado: (2021) -
Author Correction: Automated deep learning for classification of dental implant radiographs using a large multi-center dataset
por: Park, Wonse, et al.
Publicado: (2023)