Cargando…
Machine learning models to predict post-dialysis blood pressure in children and young adults on maintenance hemodialysis
Hypertension is associated with significant cardiovascular morbidity. Blood pressure (BP) control on maintenance hemodialysis (HD) is strongly impacted by volume status. The objective of this study was to assess whether machine learning (ML) is effective in predicting post-HD BP in children and youn...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625550/ https://www.ncbi.nlm.nih.gov/pubmed/37925489 http://dx.doi.org/10.1038/s41598-023-46171-3 |
_version_ | 1785131155737018368 |
---|---|
author | Bou-Matar, Raed Dell, Katherine M. Bobrowski, Amy |
author_facet | Bou-Matar, Raed Dell, Katherine M. Bobrowski, Amy |
author_sort | Bou-Matar, Raed |
collection | PubMed |
description | Hypertension is associated with significant cardiovascular morbidity. Blood pressure (BP) control on maintenance hemodialysis (HD) is strongly impacted by volume status. The objective of this study was to assess whether machine learning (ML) is effective in predicting post-HD BP in children and young adults on HD. We collected data on BP, IDWG, pulse, and weights for patients on maintenance HD (> 3 months). Input features included DW, pre-post weight difference, IDWG and pre-HD BP. Seven models were trained and tuned using open-source libraries. Model performance was evaluated using time-series cross-validation on a rolling basis (3–12 month training, 1-day testing). Various regression scores were compared between models. Data for 35 patients (14,375 HD sessions) were analyzed. Extreme gradient boosting (XGB) and vector autoregression with exogenous regressors (VARX) achieved better accuracy in predicting post-dialysis systolic BP than K-nearest neighbor, support vector regression (SVR) with radial basis function kernel and random forest (p < 0.001 for each). The differences in accuracy between XGB, VARX, SVR with linear kernel, random forest and linear regression were not significant. Using clinical parameters, ML models may be useful in predicting post-HD BP, which may help guide DW adjustment and optimizing BP control for maintenance HD patients. |
format | Online Article Text |
id | pubmed-10625550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106255502023-11-06 Machine learning models to predict post-dialysis blood pressure in children and young adults on maintenance hemodialysis Bou-Matar, Raed Dell, Katherine M. Bobrowski, Amy Sci Rep Article Hypertension is associated with significant cardiovascular morbidity. Blood pressure (BP) control on maintenance hemodialysis (HD) is strongly impacted by volume status. The objective of this study was to assess whether machine learning (ML) is effective in predicting post-HD BP in children and young adults on HD. We collected data on BP, IDWG, pulse, and weights for patients on maintenance HD (> 3 months). Input features included DW, pre-post weight difference, IDWG and pre-HD BP. Seven models were trained and tuned using open-source libraries. Model performance was evaluated using time-series cross-validation on a rolling basis (3–12 month training, 1-day testing). Various regression scores were compared between models. Data for 35 patients (14,375 HD sessions) were analyzed. Extreme gradient boosting (XGB) and vector autoregression with exogenous regressors (VARX) achieved better accuracy in predicting post-dialysis systolic BP than K-nearest neighbor, support vector regression (SVR) with radial basis function kernel and random forest (p < 0.001 for each). The differences in accuracy between XGB, VARX, SVR with linear kernel, random forest and linear regression were not significant. Using clinical parameters, ML models may be useful in predicting post-HD BP, which may help guide DW adjustment and optimizing BP control for maintenance HD patients. Nature Publishing Group UK 2023-11-04 /pmc/articles/PMC10625550/ /pubmed/37925489 http://dx.doi.org/10.1038/s41598-023-46171-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Bou-Matar, Raed Dell, Katherine M. Bobrowski, Amy Machine learning models to predict post-dialysis blood pressure in children and young adults on maintenance hemodialysis |
title | Machine learning models to predict post-dialysis blood pressure in children and young adults on maintenance hemodialysis |
title_full | Machine learning models to predict post-dialysis blood pressure in children and young adults on maintenance hemodialysis |
title_fullStr | Machine learning models to predict post-dialysis blood pressure in children and young adults on maintenance hemodialysis |
title_full_unstemmed | Machine learning models to predict post-dialysis blood pressure in children and young adults on maintenance hemodialysis |
title_short | Machine learning models to predict post-dialysis blood pressure in children and young adults on maintenance hemodialysis |
title_sort | machine learning models to predict post-dialysis blood pressure in children and young adults on maintenance hemodialysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625550/ https://www.ncbi.nlm.nih.gov/pubmed/37925489 http://dx.doi.org/10.1038/s41598-023-46171-3 |
work_keys_str_mv | AT boumatarraed machinelearningmodelstopredictpostdialysisbloodpressureinchildrenandyoungadultsonmaintenancehemodialysis AT dellkatherinem machinelearningmodelstopredictpostdialysisbloodpressureinchildrenandyoungadultsonmaintenancehemodialysis AT bobrowskiamy machinelearningmodelstopredictpostdialysisbloodpressureinchildrenandyoungadultsonmaintenancehemodialysis |