Cargando…
Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework
Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmar...
Autores principales: | Stebani, Jannik, Blaimer, Martin, Zabler, Simon, Neun, Tilmann, Pelt, Daniël M., Rak, Kristen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625555/ https://www.ncbi.nlm.nih.gov/pubmed/37925540 http://dx.doi.org/10.1038/s41598-023-45466-9 |
Ejemplares similares
-
Deep learning for the fully automated segmentation of the inner ear on MRI
por: Vaidyanathan, Akshayaa, et al.
Publicado: (2021) -
Vestibular Aqueduct Morphology and Meniere's Disease—Development of the “Vestibular Aqueduct Score” by 3D Analysis
por: Noyalet, Laurent, et al.
Publicado: (2022) -
Towards fully automated segmentation of rat cardiac MRI by leveraging deep learning frameworks
por: Fernández-Llaneza, Daniel, et al.
Publicado: (2022) -
Inner Ear
por: Arnold, Andreas, et al.
Publicado: (2010) -
Proteomics and the Inner Ear
por: Thalmann, Isolde
Publicado: (2001)