Cargando…
Altered Gut Microbiota and Short-chain Fatty Acids in Chinese Children with Constipated Autism Spectrum Disorder
Gastrointestinal symptoms are more prevalent in children with autism spectrum disorder (ASD) than in typically developing (TD) children. Constipation is a significant gastrointestinal comorbidity of ASD, but the associations among constipated autism spectrum disorder (C-ASD), microbiota and short-ch...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625580/ https://www.ncbi.nlm.nih.gov/pubmed/37925571 http://dx.doi.org/10.1038/s41598-023-46566-2 |
Sumario: | Gastrointestinal symptoms are more prevalent in children with autism spectrum disorder (ASD) than in typically developing (TD) children. Constipation is a significant gastrointestinal comorbidity of ASD, but the associations among constipated autism spectrum disorder (C-ASD), microbiota and short-chain fatty acids (SCFAs) are still debated. We enrolled 80 children, divided into the C-ASD group (n = 40) and the TD group (n = 40). In this study, an integrated 16S rRNA gene sequencing and gas chromatography–mass spectrometry-based metabolomics approach was applied to explore the association of the gut microbiota and SCFAs in C-ASD children in China. The community diversity estimated by the Observe, Chao1, and ACE indices was significantly lower in the C-ASD group than in the TD group. We observed that Ruminococcaceae_UCG_002, Erysipelotrichaceae_UCG_003, Phascolarctobacterium, Megamonas, Ruminiclostridium_5, Parabacteroides, Prevotella_2, Fusobacterium, and Prevotella_9 were enriched in the C-ASD group, and Anaerostipes, Lactobacillus, Ruminococcus_gnavus_group, Lachnospiraceae_NK4A136_group, Ralstonia, Eubacterium_eligens_group, and Ruminococcus_1 were enriched in the TD group. The propionate levels, which were higher in the C-ASD group, were negatively correlated with the abundance of Lactobacillus taxa, but were positively correlated with the severity of ASD symptoms. The random forest model, based on the 16 representative discriminant genera, achieved a high accuracy (AUC = 0.924). In conclusion, we found that C-ASD is related to altered gut microbiota and SCFAs, especially decreased abundance of Lactobacillus and excessive propionate in faeces, which provide new clues to understand C-ASD and biomarkers for the diagnosis and potential strategies for treatment of the disorder. This study was registered in the Chinese Clinical Trial Registry (www.chictr.org.cn; trial registration number ChiCTR2100052106; date of registration: October 17, 2021). |
---|