Cargando…
Identification of genetic biomarkers, drug targets and agents for respiratory diseases utilising integrated bioinformatics approaches
Respiratory diseases (RD) are significant public health burdens and malignant diseases worldwide. However, the RD-related biological information and interconnection still need to be better understood. Thus, this study aims to detect common differential genes and potential hub genes (HubGs), emphasiz...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625598/ https://www.ncbi.nlm.nih.gov/pubmed/37925496 http://dx.doi.org/10.1038/s41598-023-46455-8 |
Sumario: | Respiratory diseases (RD) are significant public health burdens and malignant diseases worldwide. However, the RD-related biological information and interconnection still need to be better understood. Thus, this study aims to detect common differential genes and potential hub genes (HubGs), emphasizing their actions, signaling pathways, regulatory biomarkers for diagnosing RD and candidate drugs for treating RD. In this paper we used integrated bioinformatics approaches (such as, gene ontology (GO) and KEGG pathway enrichment analysis, molecular docking, molecular dynamic simulation and network-based molecular interaction analysis). We discovered 73 common DEGs (CDEGs) and ten HubGs (ATAD2B, PPP1CB, FOXO1, AKT3, BCR, PDE4D, ITGB1, PCBP2, CD44 and SMARCA2). Several significant functions and signaling pathways were strongly related to RD. We recognized six transcription factor (TF) proteins (FOXC1, GATA2, FOXL1, YY1, POU2F2 and HINFP) and five microRNAs (hsa-mir-218-5p, hsa-mir-335-5p, hsa-mir-16-5p, hsa-mir-106b-5p and hsa-mir-15b-5p) as the important transcription and post-transcription regulators of RD. Ten HubGs and six major TF proteins were considered drug-specific receptors. Their binding energy analysis study was carried out with the 63 drug agents detected from network analysis. Finally, the five complexes (the PDE4D-benzo[a]pyrene, SMARCA2-benzo[a]pyrene, HINFP-benzo[a]pyrene, CD44-ketotifen and ATAD2B-ponatinib) were selected for RD based on their strong binding affinity scores and stable performance as the most probable repurposable protein-drug complexes. We believe our findings will give readers, wet-lab scientists, and pharmaceuticals a thorough grasp of the biology behind RD. |
---|