Cargando…

Identifying topological corner states in two-dimensional metal-organic frameworks

Due to the diversity of molecular building blocks, the two-dimensional (2D) metal-organic frameworks (MOFs) are ideal platforms to realize exotic lattice models in condensed matter theory. In this work, we demonstrate the universal existence of topological corner states in 2D MOFs with a star lattic...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Tianyi, Zhong, Weiliang, Zhang, Tingfeng, Wang, Weihua, Wang, Z. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625601/
https://www.ncbi.nlm.nih.gov/pubmed/37925474
http://dx.doi.org/10.1038/s41467-023-42884-1
Descripción
Sumario:Due to the diversity of molecular building blocks, the two-dimensional (2D) metal-organic frameworks (MOFs) are ideal platforms to realize exotic lattice models in condensed matter theory. In this work, we demonstrate the universal existence of topological corner states in 2D MOFs with a star lattice configuration, and confirm the intriguing higher-order nontrivial topology in the energy window between two Kagome-bands, or between Dirac-band and four-band. Furthermore, combining first-principles calculations and scanning tunneling microscopy measurements, the unique topological corner state is directly identified in monolayer Ni(3)(HITP)(2) (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) grown on the Au(111) substrate. Our results not only illustrate the first organic topological state in the experiments, but also offer an exciting opportunity to study higher-order topology in 2D MOFs with the large insulating band gap.