Cargando…
Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons
Two facts about cortex are widely accepted: neuronal responses show large spiking variability with near Poisson statistics and cortical circuits feature abundant recurrent connections between neurons. How these spiking and circuit properties combine to support sensory representation and information...
Autores principales: | Zhang, Wen-Hao, Wu, Si, Josić, Krešimir, Doiron, Brent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625605/ https://www.ncbi.nlm.nih.gov/pubmed/37925497 http://dx.doi.org/10.1038/s41467-023-41743-3 |
Ejemplares similares
-
Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons
por: Pecevski, Dejan, et al.
Publicado: (2011) -
Motif statistics and spike correlations in neuronal networks
por: Hu, Yu, et al.
Publicado: (2012) -
Bayesian Inference for Generalized Linear Models for Spiking Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2010) -
Bayesian inference for stochastic processes
por: Broemeling, Lyle D
Publicado: (2017) -
Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons
por: Buesing, Lars, et al.
Publicado: (2011)