Cargando…
Diagnostic Outcomes of Concurrent DNA and RNA Sequencing in Individuals Undergoing Hereditary Cancer Testing
IMPORTANCE: Personalized surveillance, prophylaxis, and cancer treatment options for individuals with hereditary cancer predisposition are informed by results of germline genetic testing. Improvements to genomic technology, such as the availability of RNA sequencing, may increase identification of i...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625669/ https://www.ncbi.nlm.nih.gov/pubmed/37924330 http://dx.doi.org/10.1001/jamaoncol.2023.5586 |
Sumario: | IMPORTANCE: Personalized surveillance, prophylaxis, and cancer treatment options for individuals with hereditary cancer predisposition are informed by results of germline genetic testing. Improvements to genomic technology, such as the availability of RNA sequencing, may increase identification of individuals eligible for personalized interventions by improving the accuracy and yield of germline testing. OBJECTIVE: To assess the cumulative association of paired DNA and RNA testing with detection of disease-causing germline genetic variants and resolution of variants of uncertain significance (VUS). DESIGN, SETTING, AND PARTICIPANTS: Paired DNA and RNA sequencing was performed on individuals undergoing germline testing for hereditary cancer indication at a single diagnostic laboratory from March 2019 through April 2020. Demographic characteristics, clinical data, and test results were curated as samples were received, and changes to variant classification were assessed over time. Data analysis was performed from May 2020 to June 2023. MAIN OUTCOMES AND MEASURES: Main outcomes were increase in diagnostic yield, decrease in VUS rate, the overall results by variant type, the association of RNA evidence with variant classification, and the corresponding predicted effect on cancer risk management. RESULTS: A total of 43 524 individuals were included (median [range] age at testing, 54 [2-101] years; 37 373 female individuals [85.7%], 6224 male individuals [14.3%], and 2 individuals of unknown sex [<0.1%]), with 43 599 tests. A total of 2197 (5.0%) were Ashkenazi Jewish, 1539 (3.5%) were Asian, 3077 (7.1%) were Black, 2437 (5.6%) were Hispanic, 27 793 (63.7%) were White, and 2049 (4.7%) were other race, and for 4507 individuals (10.3%), race and ethnicity were unknown. Variant classification was impacted in 549 individuals (1.3%). Medically significant upgrades were made in 97 individuals, including 70 individuals who had a variant reclassified from VUS to pathogenic/likely pathogenic (P/LP) and 27 individuals who had a novel deep intronic P/LP variant that would not have been detected using DNA sequencing alone. A total of 93 of 545 P/LP splicing variants (17.1%) were dependent on RNA evidence for classification, and 312 of 439 existing splicing VUS (71.1%) were resolved by RNA evidence. Notably, the increase in positive rate (3.1%) and decrease in VUS rate (−3.9%) was higher in Asian, Black, and Hispanic individuals combined compared to White individuals (1.6%; P = .02; and −2.5%; P < .001). CONCLUSIONS AND RELEVANCE: Findings of this diagnostic study demonstrate that the ability to perform RNA sequencing concurrently with DNA sequencing represents an important advancement in germline genetic testing by improving detection of novel variants and classification of existing variants. This expands the identification of individuals with hereditary cancer predisposition and increases opportunities for personalization of therapeutics and surveillance. |
---|