Cargando…
Dissecting unsupervised learning through hidden Markov modeling in electrophysiological data
Unsupervised, data-driven methods are commonly used in neuroscience to automatically decompose data into interpretable patterns. These patterns differ from one another depending on the assumptions of the models. How these assumptions affect specific data decompositions in practice, however, is often...
Autores principales: | Masaracchia, Laura, Fredes, Felipe, Woolrich, Mark W., Vidaurre, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625837/ https://www.ncbi.nlm.nih.gov/pubmed/37403598 http://dx.doi.org/10.1152/jn.00054.2023 |
Ejemplares similares
-
Task-Evoked Dynamic Network Analysis Through Hidden Markov Modeling
por: Quinn, Andrew J., et al.
Publicado: (2018) -
Characterising Eye Movement Events with an Unsupervised Hidden Markov Model
por: Lüken, Malte, et al.
Publicado: (2022) -
Spectrally resolved fast transient brain states in electrophysiological data
por: Vidaurre, Diego, et al.
Publicado: (2016) -
Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model
por: Zhang, Siqi, et al.
Publicado: (2021) -
Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson’s disease patients
por: Roth, Nils, et al.
Publicado: (2021)