Cargando…
Predicting dengue transmission rates by comparing different machine learning models with vector indices and meteorological data
Machine learning algorithms (ML) are receiving a lot of attention in the development of predictive models for monitoring dengue transmission rates. Previous work has focused only on specific weather variables and algorithms, and there is still a need for a model that uses more variables and algorith...
Autores principales: | Ong, Song Quan, Isawasan, Pradeep, Ngesom, Ahmad Mohiddin Mohd, Shahar, Hanipah, Lasim, As’malia Md, Nair, Gomesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625978/ https://www.ncbi.nlm.nih.gov/pubmed/37926755 http://dx.doi.org/10.1038/s41598-023-46342-2 |
Ejemplares similares
-
Implications of the COVID-19 Lockdown on Dengue Transmission in Malaysia
por: Ong, Song-Quan, et al.
Publicado: (2021) -
Leptospirosis and Coinfection: Should We Be Concerned?
por: Md-Lasim, Asmalia, et al.
Publicado: (2021) -
Implementation of a deep learning model for automated classification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in real time
por: Ong, Song-Quan, et al.
Publicado: (2021) -
Evaluation of a mosquito home system for controlling Aedes aegypti
por: Mohd Ngesom, Ahmad Mohiddin, et al.
Publicado: (2021) -
Meteorological indicators of dengue epidemics in non-endemic Northwest Argentina
por: Gutierrez, Javier Armando, et al.
Publicado: (2022)