Cargando…
NetGO 3.0: Protein Language Model Improves Large-scale Functional Annotations
As one of the state-of-the-art automated function prediction (AFP) methods, NetGO 2.0 integrates multi-source information to improve the performance. However, it mainly utilizes the proteins with experimentally supported functional annotations without leveraging valuable information from a vast numb...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626176/ https://www.ncbi.nlm.nih.gov/pubmed/37075830 http://dx.doi.org/10.1016/j.gpb.2023.04.001 |
Sumario: | As one of the state-of-the-art automated function prediction (AFP) methods, NetGO 2.0 integrates multi-source information to improve the performance. However, it mainly utilizes the proteins with experimentally supported functional annotations without leveraging valuable information from a vast number of unannotated proteins. Recently, protein language models have been proposed to learn informative representations [e.g., Evolutionary Scale Modeling (ESM)-1b embedding] from protein sequences based on self-supervision. Here, we represented each protein by ESM-1b and used logistic regression (LR) to train a new model, LR-ESM, for AFP. The experimental results showed that LR-ESM achieved comparable performance with the best-performing component of NetGO 2.0. Therefore, by incorporating LR-ESM into NetGO 2.0, we developed NetGO 3.0 to improve the performance of AFP extensively. NetGO 3.0 is freely accessible at https://dmiip.sjtu.edu.cn/ng3.0. |
---|