Cargando…
RECOVER identifies synergistic drug combinations in vitro through sequential model optimization
For large libraries of small molecules, exhaustive combinatorial chemical screens become infeasible to perform when considering a range of disease models, assay conditions, and dose ranges. Deep learning models have achieved state-of-the-art results in silico for the prediction of synergy scores. Ho...
Autores principales: | Bertin, Paul, Rector-Brooks, Jarrid, Sharma, Deepak, Gaudelet, Thomas, Anighoro, Andrew, Gross, Torsten, Martínez-Peña, Francisco, Tang, Eileen L., Suraj, M.S., Regep, Cristian, Hayter, Jeremy B.R., Korablyov, Maksym, Valiante, Nicholas, van der Sloot, Almer, Tyers, Mike, Roberts, Charles E.S., Bronstein, Michael M., Lairson, Luke L., Taylor-King, Jake P., Bengio, Yoshua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626197/ https://www.ncbi.nlm.nih.gov/pubmed/37797618 http://dx.doi.org/10.1016/j.crmeth.2023.100599 |
Ejemplares similares
-
Utilizing graph machine learning within drug discovery and development
por: Gaudelet, Thomas, et al.
Publicado: (2021) -
Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation
por: Scellier, Benjamin, et al.
Publicado: (2017) -
Deep learning
por: Goodfellow, Ian, et al.
Publicado: (2016) -
Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition
por: Trofimov, Assya, et al.
Publicado: (2020) -
Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient Estimator Bias
por: Laborieux, Axel, et al.
Publicado: (2021)