Cargando…
TERSE/PROLIX (TRPX) – a new algorithm for fast and lossless compression and decompression of diffraction and cryo-EM data
High-throughput data collection in crystallography poses significant challenges in handling massive amounts of data. Here, TERSE/PROLIX (or TRPX for short) is presented, a novel lossless compression algorithm specifically designed for diffraction data. The algorithm is compared with established loss...
Autores principales: | Matinyan, Senik, Abrahams, Jan Pieter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626653/ https://www.ncbi.nlm.nih.gov/pubmed/37743849 http://dx.doi.org/10.1107/S205327332300760X |
Ejemplares similares
-
Machine learning for classifying narrow-beam electron diffraction data
por: Matinyan, Senik, et al.
Publicado: (2023) -
A (terse) introduction to linear algebra
por: Katznelson, Yitzhak, et al.
Publicado: (2008) -
A (terse) introduction to Lebesgue integration
por: Franks, John
Publicado: (2009) -
Fast lossless compression via cascading Bloom filters
por: Rozov, Roye, et al.
Publicado: (2014) -
Lossless Compression Handbook
por: Sayood, Khalid
Publicado: (2002)