Cargando…

Taste receptor type 1 member 3 enables western diet-induced anxiety in mice

BACKGROUND: Accumulating evidence supports that the Western diet (WD), a diet high in saturated fat and sugary drinks, contributes to the pathogenesis of anxiety disorders, which are the most prevalent mental disorders worldwide. However, the underlying mechanisms by which WD causes anxiety remain u...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Jae Won, Lee, Keon-Hee, Seong, Hobin, Shin, Dong-Mi, Shon, Woo-Jeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626698/
https://www.ncbi.nlm.nih.gov/pubmed/37926812
http://dx.doi.org/10.1186/s12915-023-01723-x
Descripción
Sumario:BACKGROUND: Accumulating evidence supports that the Western diet (WD), a diet high in saturated fat and sugary drinks, contributes to the pathogenesis of anxiety disorders, which are the most prevalent mental disorders worldwide. However, the underlying mechanisms by which WD causes anxiety remain unclear. Abundant expression of taste receptor type 1 member 3 (TAS1R3) has been identified in the hypothalamus, a key brain area involved in sensing peripheral nutritional signals and regulating anxiety. Thus, we investigated the influence of excessive WD intake on anxiety and mechanisms by which WD intake affects anxiety development using wild-type (WT) and Tas1r3 deficient (Tas1r3(−/−)) mice fed a normal diet (ND) or WD for 12 weeks. RESULTS: WD increased anxiety in male WT mice, whereas male Tas1r3(−/−) mice were protected from WD-induced anxiety, as assessed by open field (OF), elevated plus maze (EPM), light–dark box (LDB), and novelty-suppressed feeding (NSF) tests. Analyzing the hypothalamic transcriptome of WD-fed WT and Tas1r3(−/−) mice, we found 1,432 genes significantly up- or down-regulated as a result of Tas1r3 deficiency. Furthermore, bioinformatic analysis revealed that the CREB/BDNF signaling-mediated maintenance of neuronal regeneration, which can prevent anxiety development, was enhanced in WD-fed Tas1r3(−/−) mice compared with WD-fed WT mice. Additionally, in vitro studies further confirmed that Tas1r3 knockdown prevents the suppression of Creb1 and of CREB-mediated BDNF expression caused by high levels of glucose, fructose, and palmitic acid in hypothalamic neuronal cells. CONCLUSIONS: Our results imply that TAS1R3 may play a key role in WD-induced alterations in hypothalamic functions, and that inhibition of TAS1R3 overactivation in the hypothalamus could offer therapeutic targets to alleviate the effects of WD on anxiety. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-023-01723-x.