Cargando…

Expression divergence of expansin genes drive the heteroblasty in Ceratopteris chingii

BACKGROUND: Sterile-fertile heteroblasty is a common phenomenon observed in ferns, where the leaf shape of a fern sporophyll, responsible for sporangium production, differs from that of a regular trophophyll. However, due to the large size and complexity of most fern genomes, the molecular mechanism...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yue, Van de Peer, Yves, Lu, Bei, Zhang, Sisi, Che, Jingru, Chen, Jinming, Marchal, Kathleen, Yang, Xingyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626718/
https://www.ncbi.nlm.nih.gov/pubmed/37926805
http://dx.doi.org/10.1186/s12915-023-01743-7
Descripción
Sumario:BACKGROUND: Sterile-fertile heteroblasty is a common phenomenon observed in ferns, where the leaf shape of a fern sporophyll, responsible for sporangium production, differs from that of a regular trophophyll. However, due to the large size and complexity of most fern genomes, the molecular mechanisms that regulate the formation of these functionally different heteroblasty have remained elusive. To shed light on these mechanisms, we generated a full-length transcriptome of Ceratopteris chingii with PacBio Iso-Seq from five tissue samples. By integrating Illumina-based sequencing short reads, we identified the genes exhibiting the most significant differential expression between sporophylls and trophophylls. RESULTS: The long reads were assembled, resulting in a total of 24,024 gene models. The differential expressed genes between heteroblasty primarily involved reproduction and cell wall composition, with a particular focus on expansin genes. Reconstructing the phylogeny of expansin genes across 19 plant species, ranging from green algae to seed plants, we identified four ortholog groups for expansins. The observed high expression of expansin genes in the young sporophylls of C. chingii emphasizes their role in the development of heteroblastic leaves. Through gene coexpression analysis, we identified highly divergent expressions of expansin genes both within and between species. CONCLUSIONS: The specific regulatory interactions and accompanying expression patterns of expansin genes are associated with variations in leaf shapes between sporophylls and trophophylls. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-023-01743-7.