Cargando…

Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study

INTRODUCTION: Timely identification of at-risk neonates (ARNs) in the community is essential to reduce mortality in low-resource settings. Tools such as American Academy of Pediatrics pulse oximetry (POx) and WHO Young Infants Clinical Signs (WHOS) have high specificity but low sensitivity to identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasan, Babar S, Hoodbhoy, Zahra, Khan, Amna, Nogueira, Mariana, Bijnens, Bart, Chowdhury, Devyani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626794/
https://www.ncbi.nlm.nih.gov/pubmed/37918940
http://dx.doi.org/10.1136/bmjpo-2023-002134
_version_ 1785131413235826688
author Hasan, Babar S
Hoodbhoy, Zahra
Khan, Amna
Nogueira, Mariana
Bijnens, Bart
Chowdhury, Devyani
author_facet Hasan, Babar S
Hoodbhoy, Zahra
Khan, Amna
Nogueira, Mariana
Bijnens, Bart
Chowdhury, Devyani
author_sort Hasan, Babar S
collection PubMed
description INTRODUCTION: Timely identification of at-risk neonates (ARNs) in the community is essential to reduce mortality in low-resource settings. Tools such as American Academy of Pediatrics pulse oximetry (POx) and WHO Young Infants Clinical Signs (WHOS) have high specificity but low sensitivity to identify ARNs. Our aim was assessing the value of POx and WHOS independently, in combination and with machine learning (ML) from clinical features, to detect ARNs in a low/middle-income country. METHODS: This prospective cohort study was conducted in a periurban community in Pakistan. Eligible live births were screened using WHOS and POx along with clinical information regarding pregnancy and delivery. The enrolled neonates were followed for 4 weeks of life to assess the vital status. The predictive value to identify ARNs, of POx, WHOS and an ML model using maternal and neonatal clinical features, was assessed. RESULTS: Of 1336 neonates, 68 (5%) had adverse outcomes, that is, sepsis (n=40, 59%), critical congenital heart disease (n=2, 3%), severe persistent pulmonary hypertension (n=1), hospitalisation (n=8, 12%) and death (n=17, 25%) assessed at 4 weeks of life. Specificity of POx and WHOS to independently identify ARNs was 99%, with sensitivity of 19% and 63%,respectively. Combining both improved sensitivity to 70%, keeping specificity at 98%. An ML model using clinical variables had 44% specificity and 76% sensitivity. A staged assessment, where WHOS, POx and ML are sequentially used for triage, increased sensitivity to 85%, keeping specificity 75%. Using ML (when WHOS and POx negative) for community follow-up detected the majority of ARNs. CONCLUSION: Classic screening, combined with ML, can help maximise identifying ARNs and could be embedded in low-resource clinical settings, thereby improving outcome. Sequential use of classic assessment and clinical ML identifies the most ARNs in the community, still optimising follow-up clinical care.
format Online
Article
Text
id pubmed-10626794
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BMJ Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-106267942023-11-07 Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study Hasan, Babar S Hoodbhoy, Zahra Khan, Amna Nogueira, Mariana Bijnens, Bart Chowdhury, Devyani BMJ Paediatr Open Neonatology INTRODUCTION: Timely identification of at-risk neonates (ARNs) in the community is essential to reduce mortality in low-resource settings. Tools such as American Academy of Pediatrics pulse oximetry (POx) and WHO Young Infants Clinical Signs (WHOS) have high specificity but low sensitivity to identify ARNs. Our aim was assessing the value of POx and WHOS independently, in combination and with machine learning (ML) from clinical features, to detect ARNs in a low/middle-income country. METHODS: This prospective cohort study was conducted in a periurban community in Pakistan. Eligible live births were screened using WHOS and POx along with clinical information regarding pregnancy and delivery. The enrolled neonates were followed for 4 weeks of life to assess the vital status. The predictive value to identify ARNs, of POx, WHOS and an ML model using maternal and neonatal clinical features, was assessed. RESULTS: Of 1336 neonates, 68 (5%) had adverse outcomes, that is, sepsis (n=40, 59%), critical congenital heart disease (n=2, 3%), severe persistent pulmonary hypertension (n=1), hospitalisation (n=8, 12%) and death (n=17, 25%) assessed at 4 weeks of life. Specificity of POx and WHOS to independently identify ARNs was 99%, with sensitivity of 19% and 63%,respectively. Combining both improved sensitivity to 70%, keeping specificity at 98%. An ML model using clinical variables had 44% specificity and 76% sensitivity. A staged assessment, where WHOS, POx and ML are sequentially used for triage, increased sensitivity to 85%, keeping specificity 75%. Using ML (when WHOS and POx negative) for community follow-up detected the majority of ARNs. CONCLUSION: Classic screening, combined with ML, can help maximise identifying ARNs and could be embedded in low-resource clinical settings, thereby improving outcome. Sequential use of classic assessment and clinical ML identifies the most ARNs in the community, still optimising follow-up clinical care. BMJ Publishing Group 2023-11-02 /pmc/articles/PMC10626794/ /pubmed/37918940 http://dx.doi.org/10.1136/bmjpo-2023-002134 Text en © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY. Published by BMJ. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.
spellingShingle Neonatology
Hasan, Babar S
Hoodbhoy, Zahra
Khan, Amna
Nogueira, Mariana
Bijnens, Bart
Chowdhury, Devyani
Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
title Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
title_full Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
title_fullStr Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
title_full_unstemmed Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
title_short Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
title_sort can machine learning methods be used for identification of at-risk neonates in low-resource settings? a prospective cohort study
topic Neonatology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626794/
https://www.ncbi.nlm.nih.gov/pubmed/37918940
http://dx.doi.org/10.1136/bmjpo-2023-002134
work_keys_str_mv AT hasanbabars canmachinelearningmethodsbeusedforidentificationofatriskneonatesinlowresourcesettingsaprospectivecohortstudy
AT hoodbhoyzahra canmachinelearningmethodsbeusedforidentificationofatriskneonatesinlowresourcesettingsaprospectivecohortstudy
AT khanamna canmachinelearningmethodsbeusedforidentificationofatriskneonatesinlowresourcesettingsaprospectivecohortstudy
AT nogueiramariana canmachinelearningmethodsbeusedforidentificationofatriskneonatesinlowresourcesettingsaprospectivecohortstudy
AT bijnensbart canmachinelearningmethodsbeusedforidentificationofatriskneonatesinlowresourcesettingsaprospectivecohortstudy
AT chowdhurydevyani canmachinelearningmethodsbeusedforidentificationofatriskneonatesinlowresourcesettingsaprospectivecohortstudy