Cargando…
Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
INTRODUCTION: Timely identification of at-risk neonates (ARNs) in the community is essential to reduce mortality in low-resource settings. Tools such as American Academy of Pediatrics pulse oximetry (POx) and WHO Young Infants Clinical Signs (WHOS) have high specificity but low sensitivity to identi...
Autores principales: | Hasan, Babar S, Hoodbhoy, Zahra, Khan, Amna, Nogueira, Mariana, Bijnens, Bart, Chowdhury, Devyani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626794/ https://www.ncbi.nlm.nih.gov/pubmed/37918940 http://dx.doi.org/10.1136/bmjpo-2023-002134 |
Ejemplares similares
-
Evaluation of a continuous neonatal temperature monitor for low-resource settings: a device feasibility pilot study
por: Sosa Saenz, Sonia E., et al.
Publicado: (2020) -
Machine learning from fetal flow waveforms to predict adverse perinatal outcomes: a study protocol
por: Hoodbhoy, Zahra, et al.
Publicado: (2018) -
Clinical detection of ‘cold stress’ is overlooked: an online survey of healthcare workers to explore the gap in neonatal thermal care in low-resource settings
por: Kyokan, Michiko, et al.
Publicado: (2022) -
Development and internal validation of a Neonatal Healthcare-associated infectiOn Prediction score (NeoHoP score) for very low birthweight infants in low-resource settings: a retrospective case–control study
por: Lloyd, Lizel G, et al.
Publicado: (2023) -
Pilot study to establish a prospective neonatal cohort: Study of Preterm Infants and Neurodevelopmental Genes (SPRING)
por: Wong, Hilary S, et al.
Publicado: (2020)