Cargando…

Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses

BACKGROUND: γ-aminobutyric acid (GABA), as a regulator of many aspects of plant growth, has a pivotal role in improving plant stress resistance. However, few studies have focused on the use of GABA in increasing plants’ resistance to interactional stresses, such as drought-salinity. Therefore, the f...

Descripción completa

Detalles Bibliográficos
Autores principales: Zarbakhsh, Saeedeh, Shahsavar, Ali Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626824/
https://www.ncbi.nlm.nih.gov/pubmed/37926819
http://dx.doi.org/10.1186/s12870-023-04568-2
_version_ 1785131420528672768
author Zarbakhsh, Saeedeh
Shahsavar, Ali Reza
author_facet Zarbakhsh, Saeedeh
Shahsavar, Ali Reza
author_sort Zarbakhsh, Saeedeh
collection PubMed
description BACKGROUND: γ-aminobutyric acid (GABA), as a regulator of many aspects of plant growth, has a pivotal role in improving plant stress resistance. However, few studies have focused on the use of GABA in increasing plants’ resistance to interactional stresses, such as drought-salinity. Therefore, the focus of this study was to examine the effect of foliar application of GABA (0, 10, 20, and 40 mM) on growth indices and physio-biochemical parameters in plants of two pomegranate cultivars, ‘Rabab’ and ‘Atabaki’ exposed to drought, salinity, and drought-salinity. RESULTS: Under stress conditions, the photosynthetic capacity of two pomegranate cultivars, including transpiration rate, net photosynthetic rate, intercellular carbon dioxide concentration, stomatal conductance of water vapour, and mesophyll conductance, was significantly reduced. This resulted in a decrease in root morphological traits such as fresh and dry weight, diameter, and volume, as well as the fresh and dry weight of the aerial part of the plants. However, the application of GABA reversed the negative effects caused by stress treatments on growth parameters and maintained the photosynthetic capacity. GABA application has induced the accumulation of compatible osmolytes, including total soluble carbohydrate, starch, glucose, fructose, and sucrose, in charge of providing energy for cellular defense response against abiotic stresses. Analysis of mineral nutrients has shown that GABA application increases the absorption of potassium, potassium/sodium, magnesium, phosphorus, manganese, zinc, and iron. As concentration increased up to 40 mM, GABA prevented the uptake of toxic ions, sodium and chloride. CONCLUSIONS: These findings highlight the potential of GABA as a biostimulant strategy to enhance plant stress tolerance.
format Online
Article
Text
id pubmed-10626824
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-106268242023-11-07 Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses Zarbakhsh, Saeedeh Shahsavar, Ali Reza BMC Plant Biol Research BACKGROUND: γ-aminobutyric acid (GABA), as a regulator of many aspects of plant growth, has a pivotal role in improving plant stress resistance. However, few studies have focused on the use of GABA in increasing plants’ resistance to interactional stresses, such as drought-salinity. Therefore, the focus of this study was to examine the effect of foliar application of GABA (0, 10, 20, and 40 mM) on growth indices and physio-biochemical parameters in plants of two pomegranate cultivars, ‘Rabab’ and ‘Atabaki’ exposed to drought, salinity, and drought-salinity. RESULTS: Under stress conditions, the photosynthetic capacity of two pomegranate cultivars, including transpiration rate, net photosynthetic rate, intercellular carbon dioxide concentration, stomatal conductance of water vapour, and mesophyll conductance, was significantly reduced. This resulted in a decrease in root morphological traits such as fresh and dry weight, diameter, and volume, as well as the fresh and dry weight of the aerial part of the plants. However, the application of GABA reversed the negative effects caused by stress treatments on growth parameters and maintained the photosynthetic capacity. GABA application has induced the accumulation of compatible osmolytes, including total soluble carbohydrate, starch, glucose, fructose, and sucrose, in charge of providing energy for cellular defense response against abiotic stresses. Analysis of mineral nutrients has shown that GABA application increases the absorption of potassium, potassium/sodium, magnesium, phosphorus, manganese, zinc, and iron. As concentration increased up to 40 mM, GABA prevented the uptake of toxic ions, sodium and chloride. CONCLUSIONS: These findings highlight the potential of GABA as a biostimulant strategy to enhance plant stress tolerance. BioMed Central 2023-11-06 /pmc/articles/PMC10626824/ /pubmed/37926819 http://dx.doi.org/10.1186/s12870-023-04568-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Zarbakhsh, Saeedeh
Shahsavar, Ali Reza
Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses
title Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses
title_full Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses
title_fullStr Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses
title_full_unstemmed Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses
title_short Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses
title_sort exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626824/
https://www.ncbi.nlm.nih.gov/pubmed/37926819
http://dx.doi.org/10.1186/s12870-023-04568-2
work_keys_str_mv AT zarbakhshsaeedeh exogenousgaminobutyricacidimprovesthephotosynthesisefficiencysolublesugarcontentsandmineralnutrientsinpomegranateplantsexposedtodroughtsalinityanddroughtsalinitystresses
AT shahsavaralireza exogenousgaminobutyricacidimprovesthephotosynthesisefficiencysolublesugarcontentsandmineralnutrientsinpomegranateplantsexposedtodroughtsalinityanddroughtsalinitystresses