Cargando…

Application of Deep Learning in Clinical Settings for Detecting and Classifying Malaria Parasites in Thin Blood Smears

BACKGROUND: Scarcity of annotated image data sets of thin blood smears makes expert-level differentiation among Plasmodium species challenging. Here, we aimed to establish a deep learning algorithm for identifying and classifying malaria parasites in thin blood smears and evaluate its performance an...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Geng, Luo, Guoju, Lian, Heqing, Chen, Lei, Wu, Wei, Liu, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627339/
https://www.ncbi.nlm.nih.gov/pubmed/37937045
http://dx.doi.org/10.1093/ofid/ofad469
Descripción
Sumario:BACKGROUND: Scarcity of annotated image data sets of thin blood smears makes expert-level differentiation among Plasmodium species challenging. Here, we aimed to establish a deep learning algorithm for identifying and classifying malaria parasites in thin blood smears and evaluate its performance and clinical prospect. METHODS: You Only Look Once v7 was used as the backbone network for training the artificial intelligence algorithm model. The training, validation, and test sets for each malaria parasite category were randomly selected. A comprehensive analysis was performed on 12 708 thin blood smear images of various infective stages of 12 546 malaria parasites, including P falciparum, P vivax, P malariae, P ovale, P knowlesi, and P cynomolgi. Peripheral blood samples were obtained from 380 patients diagnosed with malaria. Additionally, blood samples from monkeys diagnosed with malaria were used to analyze P cynomolgi. The accuracy for detecting Plasmodium-infected blood cells was assessed through various evaluation metrics. RESULTS: The total time to identify 1116 malaria parasites was 13 seconds, with an average analysis time of 0.01 seconds for each parasite in the test set. The average precision was 0.902, with a recall and precision of infected erythrocytes of 96.0% and 94.9%, respectively. Sensitivity and specificity exceeded 96.8% and 99.3%, with an area under the receiver operating characteristic curve >0.999. The highest sensitivity (97.8%) and specificity (99.8%) were observed for trophozoites and merozoites. CONCLUSIONS: The algorithm can help facilitate the clinical and morphologic examination of malaria parasites.