Cargando…
Application of Deep Learning in Clinical Settings for Detecting and Classifying Malaria Parasites in Thin Blood Smears
BACKGROUND: Scarcity of annotated image data sets of thin blood smears makes expert-level differentiation among Plasmodium species challenging. Here, we aimed to establish a deep learning algorithm for identifying and classifying malaria parasites in thin blood smears and evaluate its performance an...
Autores principales: | Wang, Geng, Luo, Guoju, Lian, Heqing, Chen, Lei, Wu, Wei, Liu, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627339/ https://www.ncbi.nlm.nih.gov/pubmed/37937045 http://dx.doi.org/10.1093/ofid/ofad469 |
Ejemplares similares
-
Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2019) -
Deep Learning-Based Cell Detection and Extraction in Thin Blood Smears for Malaria Diagnosis
por: Ufuktepe, Deniz Kavzak, et al.
Publicado: (2021) -
Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy
por: Poostchi, Mahdieh, et al.
Publicado: (2018) -
Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and Its Smartphone Based Application
por: Fuhad, K. M. Faizullah, et al.
Publicado: (2020) -
Evaluating the Performance of Deep Learning Frameworks for Malaria Parasite Detection Using Microscopic Images of Peripheral Blood Smears
por: Uzun Ozsahin, Dilber, et al.
Publicado: (2022)