Cargando…
Bayesian linear mixed model with multiple random effects for prediction analysis on high-dimensional multi-omics data
MOTIVATION: Accurate disease risk prediction is an essential step in the modern quest for precision medicine. While high-dimensional multi-omics data have provided unprecedented data resources for prediction studies, their high-dimensionality and complex inter/intra-relationships have posed signific...
Autores principales: | Hai, Yang, Ma, Jixiang, Yang, Kaixin, Wen, Yalu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627352/ https://www.ncbi.nlm.nih.gov/pubmed/37882747 http://dx.doi.org/10.1093/bioinformatics/btad647 |
Ejemplares similares
-
Bayesian linear mixed model with multiple random effects for family-based genetic studies
por: Hai, Yang, et al.
Publicado: (2023) -
A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data
por: Wang, Xiaqiong, et al.
Publicado: (2022) -
IntOMICS: A Bayesian Framework for Reconstructing Regulatory Networks Using Multi-Omics Data
por: Pačínková, Anna, et al.
Publicado: (2023) -
A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data
por: Wang, Quan, et al.
Publicado: (2019) -
mixOmics: An R package for ‘omics feature selection and multiple data integration
por: Rohart, Florian, et al.
Publicado: (2017)