Cargando…
THPLM: a sequence-based deep learning framework for protein stability changes prediction upon point variations using pretrained protein language model
MOTIVATION: Quantitative determination of protein thermodynamic stability is a critical step in protein and drug design. Reliable prediction of protein stability changes caused by point variations contributes to developing-related fields. Over the past decades, dozens of structure-based and sequence...
Autores principales: | Gong, Jianting, Jiang, Lili, Chen, Yongbing, Zhang, Yixiang, Li, Xue, Ma, Zhiqiang, Fu, Zhiguo, He, Fei, Sun, Pingping, Ren, Zilin, Tian, Mingyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627365/ https://www.ncbi.nlm.nih.gov/pubmed/37874953 http://dx.doi.org/10.1093/bioinformatics/btad646 |
Ejemplares similares
-
Prediction of protein stability changes upon single-point variant using 3D structure profile
por: Gong, Jianting, et al.
Publicado: (2022) -
Chemical–protein relation extraction with ensembles of carefully tuned pretrained language models
por: Weber, Leon, et al.
Publicado: (2022) -
An Improved Math Word Problem (MWP) Model Using Unified Pretrained Language Model (UniLM) for Pretraining
por: Zhang, Dongqiu, et al.
Publicado: (2022) -
PLM-ARG: antibiotic resistance gene identification using a pretrained protein language model
por: Wu, Jun, et al.
Publicado: (2023) -
Sequence-to-sequence pretraining for a less-resourced Slovenian language
por: Ulčar, Matej, et al.
Publicado: (2023)