Cargando…
A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future
The increasing access to health data worldwide is driving a resurgence in machine learning research, including data-hungry deep learning algorithms. More computationally efficient algorithms now offer unique opportunities to enhance diagnosis, risk stratification, and individualised approaches to pa...
Autores principales: | Woodman, Richard J., Mangoni, Arduino A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627901/ https://www.ncbi.nlm.nih.gov/pubmed/37682491 http://dx.doi.org/10.1007/s40520-023-02552-2 |
Ejemplares similares
-
Geriatric Medicine in an Aging Society: Up for a Challenge?
por: Mangoni, Arduino A.
Publicado: (2014) -
Geriatric medicine in China: The past, present, and future
por: Yu, Pulin, et al.
Publicado: (2018) -
Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study
por: Woodman, Richard John, et al.
Publicado: (2021) -
Machine learning applications in stroke medicine: advancements, challenges, and future prospectives
por: Daidone, Mario, et al.
Publicado: (2023) -
The Future of Geriatric Medicine
por: Williams, T.C. Picton
Publicado: (1981)