Cargando…
Identifying the severity of diabetic retinopathy by visual function measures using both traditional statistical methods and interpretable machine learning: a cross-sectional study
AIMS/HYPOTHESIS: To determine the extent to which diabetic retinopathy severity stage may be classified using machine learning (ML) and commonly used clinical measures of visual function together with age and sex. METHODS: We measured the visual function of 1901 eyes from 1032 participants in the No...
Autores principales: | Wright, David M., Chakravarthy, Usha, Das, Radha, Graham, Katie W., Naskas, Timos T., Perais, Jennifer, Kee, Frank, Peto, Tunde, Hogg, Ruth E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627908/ https://www.ncbi.nlm.nih.gov/pubmed/37725107 http://dx.doi.org/10.1007/s00125-023-06005-3 |
Ejemplares similares
-
Quantitative Parameters from OCT Angiography in Patients with Diabetic Retinopathy and in Those with Only Peripheral Retinopathy Compared with Control Participants
por: Hogg, Ruth E., et al.
Publicado: (2021) -
Assessment of the Classification of Age-Related Macular Degeneration Severity from the Northern Ireland Sensory Ageing Study Using a Measure of Dark Adaptation
por: Higgins, Bethany E., et al.
Publicado: (2022) -
Evidence for Structural and Functional Damage of the Inner Retina in Diabetes With No Diabetic Retinopathy
por: Montesano, Giovanni, et al.
Publicado: (2021) -
Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy
por: Perais, Jennifer, et al.
Publicado: (2023) -
Grading images for diabetic retinopathy: tips and guidelines
por: Jamison, Catherine, et al.
Publicado: (2023)