Cargando…
Biochemical study of the effect of mesenchymal stem cells-derived exosome versus l-Dopa in experimentally induced Parkinson’s disease in rats
Parkinson’s disease (PD) is a chronic and ongoing neurological condition. Unfortunately, as the dopaminergic terminals continue to deteriorate, the effectiveness of anti-Parkinson therapy decreases. This study aimed to examine the effects of BM-MSCs-derived exosomes in rats induced with Parkinson’s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627934/ https://www.ncbi.nlm.nih.gov/pubmed/36966421 http://dx.doi.org/10.1007/s11010-023-04700-8 |
Sumario: | Parkinson’s disease (PD) is a chronic and ongoing neurological condition. Unfortunately, as the dopaminergic terminals continue to deteriorate, the effectiveness of anti-Parkinson therapy decreases. This study aimed to examine the effects of BM-MSCs-derived exosomes in rats induced with Parkinson’s disease. The goal was to determine their potential for neurogenic repair and functional restoration. Forty male albino rats were divided into four groups: control (group I), PD (group II), PD-l-Dopa (group III), and PD-exosome (group IV). Motor tests, histopathological examinations, and immunohistochemistry for tyrosine hydroxylase were performed on brain tissue. The levels of α-synuclein, DJ-1, PARKIN, circRNA.2837, and microRNA-34b were measured in brain homogenates. Rotenone induced motor deficits and neuronal alterations. Groups (III) and (IV) showed improvement in motor function, histopathology, α-synuclein, PARKIN, and DJ-1 compared to group (II). Group (IV) showed improvement in microRNA-34b and circRNA.2837 compared to groups (III) and (II). MSC-derived exosomes showed a greater suppression of neurodegenerative disease (ND) compared to l-Dopa in Parkinson’s patients. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11010-023-04700-8. |
---|