Cargando…
A Fusion-Based Machine Learning Approach for Autism Detection in Young Children Using Magnetoencephalography Signals
In this study, we aimed to find biomarkers of autism in young children. We recorded magnetoencephalography (MEG) in thirty children (4–7 years) with autism and thirty age, gender-matched controls while they were watching cartoons. We focused on characterizing neural oscillations by amplitude (power...
Autores principales: | Barik, Kasturi, Watanabe, Katsumi, Bhattacharya, Joydeep, Saha, Goutam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627976/ https://www.ncbi.nlm.nih.gov/pubmed/36192669 http://dx.doi.org/10.1007/s10803-022-05767-w |
Ejemplares similares
-
A machine learning approach to predict perceptual decisions: an insight into face pareidolia
por: Barik, Kasturi, et al.
Publicado: (2019) -
Detection of atypical network development patterns in children with autism spectrum disorder using magnetoencephalography
por: Duan, Fang, et al.
Publicado: (2017) -
Investigating Neuromagnetic Brain Responses against Chromatic Flickering Stimuli by Wavelet Entropies
por: Bhagat, Mayank, et al.
Publicado: (2009) -
Switch or stay? Automatic classification of internal mental states in bistable perception
por: Sen, Susmita, et al.
Publicado: (2019) -
Age at Diagnosis and the Risk of Diabetic Nephropathy in Young Patients with Type 1 Diabetes Mellitus (Diabetes Metab J 2021;45:46-54)
por: Baek, Jong Ha, et al.
Publicado: (2021)