Cargando…

An asymptotic formula for the variance of the number of zeroes of a stationary Gaussian process

We study the variance of the number of zeroes of a stationary Gaussian process on a long interval. We give a simple asymptotic description under mild mixing conditions. This allows us to characterise minimal and maximal growth. We show that a small (symmetrised) atom in the spectral measure at a spe...

Descripción completa

Detalles Bibliográficos
Autores principales: Assaf, Eran, Buckley, Jeremiah, Feldheim, Naomi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628032/
https://www.ncbi.nlm.nih.gov/pubmed/37941811
http://dx.doi.org/10.1007/s00440-023-01218-4
Descripción
Sumario:We study the variance of the number of zeroes of a stationary Gaussian process on a long interval. We give a simple asymptotic description under mild mixing conditions. This allows us to characterise minimal and maximal growth. We show that a small (symmetrised) atom in the spectral measure at a special frequency does not affect the asymptotic growth of the variance, while an atom at any other frequency results in maximal growth.