Cargando…
Biology-aware mutation-based deep learning for outcome prediction of cancer immunotherapy with immune checkpoint inhibitors
The response rate of cancer immune checkpoint inhibitors (ICI) varies among patients, making it challenging to pre-determine whether a particular patient will respond to immunotherapy. While gene mutation is critical to the treatment outcome, a framework capable of explicitly incorporating biology k...
Autores principales: | Liu, Junyan, Islam, Md Tauhidul, Sang, Shengtian, Qiu, Liang, Xing, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628135/ https://www.ncbi.nlm.nih.gov/pubmed/37932419 http://dx.doi.org/10.1038/s41698-023-00468-8 |
Ejemplares similares
-
Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data
por: Islam, Md Tauhidul, et al.
Publicado: (2023) -
Biology-guided deep learning predicts prognosis and cancer immunotherapy response
por: Jiang, Yuming, et al.
Publicado: (2023) -
Leveraging cell-cell similarity for high-performance spatial and temporal cellular mappings from gene expression data
por: Islam, Md Tauhidul, et al.
Publicado: (2023) -
Leveraging data-driven self-consistency for high-fidelity gene expression recovery
por: Islam, Md Tauhidul, et al.
Publicado: (2022) -
Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics
por: Jiang, Yuming, et al.
Publicado: (2023)