Cargando…
Avoiding inferior clusterings with misspecified Gaussian mixture models
Clustering is a fundamental tool for exploratory data analysis, and is ubiquitous across scientific disciplines. Gaussian Mixture Model (GMM) is a popular probabilistic and interpretable model for clustering. In many practical settings, the true data distribution, which is unknown, may be non-Gaussi...
Autores principales: | Kasa, Siva Rajesh, Rajan, Vaibhav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628229/ https://www.ncbi.nlm.nih.gov/pubmed/37932317 http://dx.doi.org/10.1038/s41598-023-44608-3 |
Ejemplares similares
-
Statistical finite elements for misspecified models
por: Duffin, Connor, et al.
Publicado: (2021) -
Inference of Gene Flow between Species under Misspecified Models
por: Huang, Jun, et al.
Publicado: (2022) -
Combined Gaussian Mixture Model and Pathfinder Algorithm for Data Clustering
por: Huang, Huajuan, et al.
Publicado: (2023) -
Model-based clustering based on sparse
finite Gaussian mixtures
por: Malsiner-Walli, Gertraud, et al.
Publicado: (2014) -
GMMchi: gene expression clustering using Gaussian mixture modeling
por: Liu, Ta-Chun, et al.
Publicado: (2022)