Cargando…
A scalable approach to optimize traffic signal control with federated reinforcement learning
Intelligent Transportation has seen significant advancements with Deep Learning and the Internet of Things, making Traffic Signal Control (TSC) research crucial for reducing congestion, travel time, emissions, and energy consumption. Reinforcement Learning (RL) has emerged as the primary method for...
Autores principales: | Bao, Jingjing, Wu, Celimuge, Lin, Yangfei, Zhong, Lei, Chen, Xianfu, Yin, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628245/ https://www.ncbi.nlm.nih.gov/pubmed/37932347 http://dx.doi.org/10.1038/s41598-023-46074-3 |
Ejemplares similares
-
An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning
por: Meng, Xutao, et al.
Publicado: (2023) -
Effects analysis of reward functions on reinforcement learning for traffic signal control
por: Lee, Hyosun, et al.
Publicado: (2022) -
Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation Study
por: Tan, Jiyuan, et al.
Publicado: (2022) -
Toward robust and scalable deep spiking reinforcement learning
por: Akl, Mahmoud, et al.
Publicado: (2023) -
Traffic Signal Control Using Hybrid Action Space Deep Reinforcement Learning
por: Bouktif, Salah, et al.
Publicado: (2021)