Cargando…
Adaptive learning embedding features to improve the predictive performance of SARS-CoV-2 phosphorylation sites
MOTIVATION: The rapid and extensive transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global health emergency, affecting millions of people and causing an immense socioeconomic impact. The identification of SARS-CoV-2 phosphorylation sites p...
Autores principales: | Jiao, Shihu, Ye, Xiucai, Ao, Chunyan, Sakurai, Tetsuya, Zou, Quan, Xu, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628388/ https://www.ncbi.nlm.nih.gov/pubmed/37847658 http://dx.doi.org/10.1093/bioinformatics/btad627 |
Ejemplares similares
-
m5U-SVM: identification of RNA 5-methyluridine modification sites based on multi-view features of physicochemical features and distributed representation
por: Ao, Chunyan, et al.
Publicado: (2023) -
Identification of plant vacuole proteins by exploiting deep representation learning features
por: Jiao, Shihu, et al.
Publicado: (2022) -
Ensemble Feature Learning to Identify Risk Factors for Predicting Secondary Cancer
por: Ye, Xiucai, et al.
Publicado: (2019) -
Editorial: Machine learning on understanding the epigenetic mechanisms underlying plant adaptation and domestication
por: Sun, Shanwen, et al.
Publicado: (2023) -
iTTCA-RF: a random forest predictor for tumor T cell antigens
por: Jiao, Shihu, et al.
Publicado: (2021)