Cargando…
Lung nodule segmentation via semi-residual multi-resolution neural networks
The integration of deep neural networks and cloud computing has become increasingly prevalent within the domain of medical image processing, facilitated by the recent strides in neural network theory and the advent of the internet of things (IoTs). This juncture has led to the emergence of numerous...
Autores principales: | Wang, Chenyang, Dai, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628569/ https://www.ncbi.nlm.nih.gov/pubmed/37941779 http://dx.doi.org/10.1515/biol-2022-0727 |
Ejemplares similares
-
Volumetric lung nodule segmentation using adaptive ROI with multi-view residual learning
por: Usman, Muhammad, et al.
Publicado: (2020) -
Multi-Level Cross Residual Network for Lung Nodule Classification
por: Lyu, Juan, et al.
Publicado: (2020) -
Effective Invasiveness Recognition of Imbalanced Data by Semi-Automated Segmentations of Lung Nodules
por: Tung, Yu-Cheng, et al.
Publicado: (2023) -
CT image segmentation for inflamed and fibrotic lungs using a multi-resolution convolutional neural network
por: Gerard, Sarah E., et al.
Publicado: (2021) -
3D multi-view convolutional neural networks for lung nodule classification
por: Kang, Guixia, et al.
Publicado: (2017)