Cargando…

Evaluation of brain nerve function in ICU patients with Delirium by deep learning algorithm-based resting state MRI

The purpose of this study was to explore the value of resting-state magnetic resonance imaging (MRI) based on the brain extraction tool (BET) algorithm in evaluating the cranial nerve function of patients with delirium in intensive care unit (ICU). A total of 100 patients with delirium in hospital w...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Xiaocheng, Jiang, Ruilai, Peng, Shushan, Wei, Yanbin, Hu, Xiaogang, Chen, Jian, Lian, Weibin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628570/
https://www.ncbi.nlm.nih.gov/pubmed/37941782
http://dx.doi.org/10.1515/biol-2022-0725
Descripción
Sumario:The purpose of this study was to explore the value of resting-state magnetic resonance imaging (MRI) based on the brain extraction tool (BET) algorithm in evaluating the cranial nerve function of patients with delirium in intensive care unit (ICU). A total of 100 patients with delirium in hospital were studied, and 20 healthy volunteers were used as control. All the subjects were examined by MRI, and the images were analyzed by the BET algorithm, and the convolution neural network (CNN) algorithm was introduced for comparison. The application effects of the two algorithms were analyzed, and the differences of brain nerve function between delirium patients and normal people were explored. The results showed that the root mean square error, high frequency error norm, and structural similarity of the BET algorithm were 70.4%, 71.5%, and 0.92, respectively, which were significantly higher than those of the CNN algorithm (P < 0.05). Compared with normal people, the ReHo values of pontine, hippocampus (right), cerebellum (left), midbrain, and basal ganglia in delirium patients were significantly higher. ReHo values of frontal gyrus, middle frontal gyrus, left inferior frontal gyrus, parietal lobe, and temporal lobe and anisotropy scores (FA) of cerebellums (left), frontal lobe, temporal lobe (left), corpus callosum, and hippocampus (left) decreased significantly. The average diffusivity (MD) of medial frontal lobe, superior temporal gyrus (right), the first half of cingulate gyrus, bilateral insula, and caudate nucleus (left) increased significantly (P < 0.05). MRI based on the deep learning algorithm can effectively improve the image quality, which is valuable in evaluating the brain nerve function of delirium patients. Abnormal brain structure damage and abnormal function can be used to help diagnose delirium.