Cargando…
COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis
A composite of catalytic Lewis acidic zirconium oxyhydroxides (8 wt %) and a covalent organic framework (COF) was synthesized. X-ray diffraction and infrared (IR) spectroscopy reveal that COF’s structure is preserved after loading with zirconium oxyhydroxides. Electron microscopy confirms a homogene...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628716/ https://www.ncbi.nlm.nih.gov/pubmed/37942004 http://dx.doi.org/10.1016/j.isci.2023.108088 |
_version_ | 1785131819025301504 |
---|---|
author | Shekhar, Pragalbh Datta Devulapalli, Venkata Swaroopa Reji, Reshma Singh, Himan Dev Jose, Aleena Singh, Piyush Torris, Arun Vinod, Chatakudath P. Tokarz, John A. Mahle, John J. Peterson, Gregory W. Borguet, Eric Vaidhyanathan, Ramanathan |
author_facet | Shekhar, Pragalbh Datta Devulapalli, Venkata Swaroopa Reji, Reshma Singh, Himan Dev Jose, Aleena Singh, Piyush Torris, Arun Vinod, Chatakudath P. Tokarz, John A. Mahle, John J. Peterson, Gregory W. Borguet, Eric Vaidhyanathan, Ramanathan |
author_sort | Shekhar, Pragalbh |
collection | PubMed |
description | A composite of catalytic Lewis acidic zirconium oxyhydroxides (8 wt %) and a covalent organic framework (COF) was synthesized. X-ray diffraction and infrared (IR) spectroscopy reveal that COF’s structure is preserved after loading with zirconium oxyhydroxides. Electron microscopy confirms a homogeneous distribution of nano- to sub-micron-sized zirconium clusters in the COF. 3D X-ray tomography captures the micron-sized channels connecting the well-dispersed zirconium clusters on the COF. The crystalline ZrO(x)(OH)(y)@COF’s nanostructure was model-optimized via simulated annealing methods. Using 0.8 mol % of the catalyst yielded a turnover number of 100–120 and a turnover frequency of 160–360 h(−1) for Knoevenagel condensation in aqueous medium. Additionally, 2.2 mol % of catalyst catalyzes the hydrolysis of dimethyl nitrophenyl phosphate, a simulant of nerve agent Soman, with a conversion rate of 37% in 180 min. The hydrolytic detoxification of the live agent Soman is also achieved. Our study unveils COF-stabilized ZrO(x)(OH)(y) as a new class of zirconium-based Lewis + Bronsted-acid catalysts. |
format | Online Article Text |
id | pubmed-10628716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-106287162023-11-08 COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis Shekhar, Pragalbh Datta Devulapalli, Venkata Swaroopa Reji, Reshma Singh, Himan Dev Jose, Aleena Singh, Piyush Torris, Arun Vinod, Chatakudath P. Tokarz, John A. Mahle, John J. Peterson, Gregory W. Borguet, Eric Vaidhyanathan, Ramanathan iScience Article A composite of catalytic Lewis acidic zirconium oxyhydroxides (8 wt %) and a covalent organic framework (COF) was synthesized. X-ray diffraction and infrared (IR) spectroscopy reveal that COF’s structure is preserved after loading with zirconium oxyhydroxides. Electron microscopy confirms a homogeneous distribution of nano- to sub-micron-sized zirconium clusters in the COF. 3D X-ray tomography captures the micron-sized channels connecting the well-dispersed zirconium clusters on the COF. The crystalline ZrO(x)(OH)(y)@COF’s nanostructure was model-optimized via simulated annealing methods. Using 0.8 mol % of the catalyst yielded a turnover number of 100–120 and a turnover frequency of 160–360 h(−1) for Knoevenagel condensation in aqueous medium. Additionally, 2.2 mol % of catalyst catalyzes the hydrolysis of dimethyl nitrophenyl phosphate, a simulant of nerve agent Soman, with a conversion rate of 37% in 180 min. The hydrolytic detoxification of the live agent Soman is also achieved. Our study unveils COF-stabilized ZrO(x)(OH)(y) as a new class of zirconium-based Lewis + Bronsted-acid catalysts. Elsevier 2023-10-27 /pmc/articles/PMC10628716/ /pubmed/37942004 http://dx.doi.org/10.1016/j.isci.2023.108088 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Shekhar, Pragalbh Datta Devulapalli, Venkata Swaroopa Reji, Reshma Singh, Himan Dev Jose, Aleena Singh, Piyush Torris, Arun Vinod, Chatakudath P. Tokarz, John A. Mahle, John J. Peterson, Gregory W. Borguet, Eric Vaidhyanathan, Ramanathan COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis |
title | COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis |
title_full | COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis |
title_fullStr | COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis |
title_full_unstemmed | COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis |
title_short | COF-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for Knoevenagel condensation and nerve agent hydrolysis |
title_sort | cof-supported zirconium oxyhydroxide as a versatile heterogeneous catalyst for knoevenagel condensation and nerve agent hydrolysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628716/ https://www.ncbi.nlm.nih.gov/pubmed/37942004 http://dx.doi.org/10.1016/j.isci.2023.108088 |
work_keys_str_mv | AT shekharpragalbh cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT dattadevulapallivenkataswaroopa cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT rejireshma cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT singhhimandev cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT josealeena cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT singhpiyush cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT torrisarun cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT vinodchatakudathp cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT tokarzjohna cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT mahlejohnj cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT petersongregoryw cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT borgueteric cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis AT vaidhyanathanramanathan cofsupportedzirconiumoxyhydroxideasaversatileheterogeneouscatalystforknoevenagelcondensationandnerveagenthydrolysis |