Cargando…
Microbiota-indole 3-propionic acid-brain axis mediates abnormal synaptic pruning of hippocampal microglia and susceptibility to ASD in IUGR offspring
BACKGROUND: Autism spectrum disorder (ASD) has been associated with intrauterine growth restriction (IUGR), but the underlying mechanisms are unclear. RESULTS: We found that the IUGR rat model induced by prenatal caffeine exposure (PCE) showed ASD-like symptoms, accompanied by altered gut microbiota...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629055/ https://www.ncbi.nlm.nih.gov/pubmed/37932832 http://dx.doi.org/10.1186/s40168-023-01656-1 |
Sumario: | BACKGROUND: Autism spectrum disorder (ASD) has been associated with intrauterine growth restriction (IUGR), but the underlying mechanisms are unclear. RESULTS: We found that the IUGR rat model induced by prenatal caffeine exposure (PCE) showed ASD-like symptoms, accompanied by altered gut microbiota and reduced production of indole 3-propionic acid (IPA), a microbiota-specific metabolite and a ligand of aryl hydrocarbon receptor (AHR). IUGR children also had a reduced serum IPA level consistent with the animal model. We demonstrated that the dysregulated IPA/AHR/NF-κB signaling caused by disturbed gut microbiota mediated the hippocampal microglia hyperactivation and neuronal synapse over-pruning in the PCE-induced IUGR rats. Moreover, postnatal IPA supplementation restored the ASD-like symptoms and the underlying hippocampal lesions in the IUGR rats. CONCLUSIONS: This study suggests that the microbiota-IPA-brain axis regulates ASD susceptibility in PCE-induced IUGR offspring, and supplementation of microbiota-derived IPA might be a promising interventional strategy for ASD with a fetal origin. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-023-01656-1. |
---|