Cargando…
Semantic segmentation of plant roots from RGB (mini-) rhizotron images—generalisation potential and false positives of established methods and advanced deep-learning models
BACKGROUND: Manual analysis of (mini-)rhizotron (MR) images is tedious. Several methods have been proposed for semantic root segmentation based on homogeneous, single-source MR datasets. Recent advances in deep learning (DL) have enabled automated feature extraction, but comparisons of segmentation...
Autores principales: | Baykalov, Pavel, Bussmann, Bart, Nair, Richard, Smith, Abraham George, Bodner, Gernot, Hadar, Ofer, Lazarovitch, Naftali, Rewald, Boris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629126/ https://www.ncbi.nlm.nih.gov/pubmed/37932745 http://dx.doi.org/10.1186/s13007-023-01101-2 |
Ejemplares similares
-
Using clear plastic CD cases as low‐cost mini‐rhizotrons to phenotype root traits
por: Cassidy, Steven T., et al.
Publicado: (2020) -
An evaluation of inexpensive methods for root image acquisition when using rhizotrons
por: Mohamed, Awaz, et al.
Publicado: (2017) -
Phenotyping Tomato Root Developmental Plasticity in Response to Salinity in Soil Rhizotrons
por: Gandullo, Jacinto, et al.
Publicado: (2021) -
Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems
por: Lobet, Guillaume, et al.
Publicado: (2013) -
Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits
por: Zhao, Jiangsan, et al.
Publicado: (2016)