Cargando…
Missing data imputation, prediction, and feature selection in diagnosis of vaginal prolapse
BACKGROUND: Data loss often occurs in the collection of clinical data. Directly discarding the incomplete sample may lead to low accuracy of medical diagnosis. A suitable data imputation method can help researchers make better use of valuable medical data. METHODS: In this paper, five popular imputa...
Autores principales: | FAN, Mingxuan, Peng, Xiaoling, Niu, Xiaoyu, Cui, Tao, He, Qiaolin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629145/ https://www.ncbi.nlm.nih.gov/pubmed/37932660 http://dx.doi.org/10.1186/s12874-023-02079-0 |
Ejemplares similares
-
A combined test for feature selection on sparse metaproteomics data—an alternative to missing value imputation
por: Plancade, Sandra, et al.
Publicado: (2022) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Evaluation of different approaches for missing data imputation on features associated to genomic data
por: Petrazzini, Ben Omega, et al.
Publicado: (2021)