Cargando…
Subject classification and cross-time prediction based on functional connectivity and white matter microstructure features in a rat model of Alzheimer’s using machine learning
BACKGROUND: The pathological process of Alzheimer’s disease (AD) typically takes decades from onset to clinical symptoms. Early brain changes in AD include MRI-measurable features such as altered functional connectivity (FC) and white matter degeneration. The ability of these features to discriminat...
Autores principales: | Diao, Yujian, Lanz, Bernard, Jelescu, Ileana Ozana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629161/ https://www.ncbi.nlm.nih.gov/pubmed/37936236 http://dx.doi.org/10.1186/s13195-023-01328-0 |
Ejemplares similares
-
PIRACY: An Optimized Pipeline for Functional Connectivity Analysis in the Rat Brain
por: Diao, Yujian, et al.
Publicado: (2021) -
Dissociable diffusion MRI patterns of white matter microstructure and connectivity in Alzheimer’s disease spectrum
por: Doan, Nhat Trung, et al.
Publicado: (2017) -
Robust Automated Detection of Microstructural White Matter Degeneration in Alzheimer’s Disease Using Machine Learning Classification of Multicenter DTI Data
por: Dyrba, Martin, et al.
Publicado: (2013) -
Challenges for biophysical modeling of microstructure
por: Jelescu, Ileana O., et al.
Publicado: (2020) -
Functional connectivity between white matter and gray matter based on fMRI for Alzheimer's disease classification
por: Zhao, Jie, et al.
Publicado: (2019)