Cargando…
Machine Learning-Guided Protein Engineering
[Image: see text] Recent progress in engineering highly promising biocatalysts has increasingly involved machine learning methods. These methods leverage existing experimental and simulation data to aid in the discovery and annotation of promising enzymes, as well as in suggesting beneficial mutatio...
Autores principales: | Kouba, Petr, Kohout, Pavel, Haddadi, Faraneh, Bushuiev, Anton, Samusevich, Raman, Sedlar, Jiri, Damborsky, Jiri, Pluskal, Tomas, Sivic, Josef, Mazurenko, Stanislav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629210/ https://www.ncbi.nlm.nih.gov/pubmed/37942269 http://dx.doi.org/10.1021/acscatal.3c02743 |
Ejemplares similares
-
Substrate inhibition by the blockage of product release and its control by tunnel engineering
por: Kokkonen, Piia, et al.
Publicado: (2021) -
Sensitive operation of enzyme-based biodevices by advanced signal processing
por: Mazurenko, Stanislav, et al.
Publicado: (2018) -
CalFitter 2.0: Leveraging the power of singular value decomposition to analyse protein thermostability
por: Kunka, Antonin, et al.
Publicado: (2022) -
Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating
por: Mazurenko, Stanislav, et al.
Publicado: (2017) -
CalFitter: a web server for analysis of protein thermal denaturation data
por: Mazurenko, Stanislav, et al.
Publicado: (2018)